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a b s t r a c t

Despite the increasing number of impressive demonstrations of the high sensitivity of nonlinear-

acoustic methods of damage detection, the physical factors which limit the ultimate sensitivity of this

approach are not yet clearly understood. In this paper we perform the corresponding analysis and

formulate criteria determining the minimal size of detectable cracks. The relation of the nonlinear-

modulation technique to the linear frequency-shift technique is discussed. The analysis is particularly

focused on the nonlinear-modulation resonance technique. It is based on rather general properties of

the defects consistently predicted by various rigorous cracks models. The obtained conclusions are

compared with experimental data obtained in nonlinear-modulation experiments on the detection of

cracks in railway axles and wheels.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

The nonlinear-acoustic technique for early crack detection is
actively studied in recent years (see, for example, [1–13]). High
sensitivity of this approach is considered as one of the most
attractive features of this methodology and is directly related to
its physical principle. Indeed, it is well known that for homo-
geneous solids, their elastic nonlinearity is mostly determined by
the weak anharmonicity of the interatomic potential [15]. In the
simplest case of longitudinal deformation, such nonlinearity can
be characterized by dimensionless coefficients in the power-series
expansion of the material stress–strain relationship, s ¼
E½�þ b�2 þ � � ��, where s is the stress, e the strain, E the elastic
modulus, and b the quadratic nonlinearity parameter. Its typical
value is on the order of several units [15], which means that for
typical acoustic strains eo10�5, the relative level of the lowest-
order nonlinear correction �be due to the quadratic term is very
small (�85 to �95 dB). Therefore, usually the quadratic approx-
imation is sufficient in most practical cases and higher-order
nonlinear terms are not taken into account.

The presence of such defects as cracks often strongly increases
the sample effective nonlinearity. Indeed, at crack’s perimeter and
at inner contacts, the strain and stress are locally strongly (orders
of magnitude) enhanced, so that the strongest deviation from
the linear Hooke’s law is localized at these ‘‘weak’’ defects. If the
defect size and/or concentration are not too small, then
the average sample nonlinearity strongly increases thus indicating
ll rights reserved.

78314365976.
the presence of damage. To detect this defect-induced growth of
the sample nonlinearity, the nonlinear-modulation technique is
considered to be one of the most sensitive methods [5]. It is
usually used in the resonance variant [1,2,8,13,14,16] in which a
relatively high-frequency (probe) wave is excited in the sample
together with a lower-frequency wave (pump) and the level of the
resultant probe-wave modulation is observed.

Independent impressive demonstrations of the superior sensi-
tivity of the nonlinear-acoustic approach compared to linear
methods are known [1–14,16]. The main concern in the feasibility
of this approach is related to ensuring sufficiently high linearity of
the transducers (including their proper coupling), of the support-
ing systems and electronic equipment, whereas the background
atomic nonlinearity of the intact material is usually considered as
a negligible factor (see, for example, [5]). The sufficient linearity of
the entire measurement system is conventionally verified by
comparing the observed levels of nonlinear distortions in
damaged and reference intact samples. However, the role of the
background atomic nonlinearity in intact samples and the
ultimate sensitivity of the nonlinear acoustic methods (i.e., the
criteria of the minimal detectable crack size) are not yet clearly
understood. The present study is intended to fill this gap and to
provide better insight in the physical factors determining the
ultimate sensitivity of the nonlinear-acoustic technique for
damage detection.
2. The role of the background atomic nonlinearity

Let us first estimate the background level on the combina-
tional-frequency components arising due to the distributed

www.sciencedirect.com/science/journal/jndt
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Fig. 1. Schematically shown configuration of nonlinear-modulation experiments

[16].
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atomic nonlinearity of solids. For further comparison with
observation data, we will use experiments [16] on the non-
linear-modulation detection of cracks in railway axles and disks in
real industrial conditions of a railway workshop. Since the original
Ref. [16] is not easily accessible, Fig. 1 schematically shows the
experimental configuration. Both intact and crack-containing
samples were studied. In some cases the cracks were natural
and in the other for calibration and testing, we used artificial
crack-like defects in the form of saw-cuts of about 1–2 mm width
and 5–8 mm in depth with tightly inserted metal plates to imitate
contacting crack interfaces.

As a reasonable model of an axle we choose a rod-shape
resonator. However, the instructive 1D approximation is not
critical for the main conclusions. Here, we also limit ourselves to
the discussion of longitudinal acoustic excitations (the Young
modes), which suffice to analyze the main factors determining the
ultimate (threshold) sensitivity of the nonlinear-modulation
method. We thus start from the 1D wave equation

r@2u=@t2 ¼ @s=@x, (1)

where r is the material density, u the particle displacement from
the equilibrium position, and s the stress. We assume that the
material can be described by a nearly Hookean law

s ¼ E½@u=@xþ Fð@u=@xÞ� þ g@2u=@x@t, (2)

where E is the elastic modulus and the terms F(@u/@x) and gq2u/
qxqt are responsible for the weak (i.e., F(@u/@x)5@u/@x) atomic
nonlinearity of the material and linear viscous-like losses,
respectively. Eqs. (2) and (1) yield the following wave equation:

@2u

@t2
� c2

0

@2u

@x2
� c2

0

@

@x
F
@u

@x

� �
�

g

r
@3u

@t@x2
¼ 0, (3)
ãn
mp ¼

8ð2mþ 1Þð2pþ 1Þð2nþ 1Þð�1Þmþnþpþ1

p½ð2n� 1� 2m� 2pÞð2nþ 1þ 2m� 2pÞð2n� 1� 2mþ 2pÞð2nþ 3þ 2mþ 2pÞ�
, (9b)
where c0 ¼ (E/r)1/2 is the acoustic-wave velocity. Various aspects
of nonlinear transformations of acoustic excitations in resonators
have been widely discussed in literature (higher harmonic
generation, parametric instabilities, nonlinear resonances, etc.,
see, for example, books [17,18]). However, to get the explicit
expressions for modulational components produced by interactic
eigenmodes, we briefly recall the conventional perturbation
procedure for a rod-like sample of length L with the following
characteristic boundary conditions:

uðx ¼ 0Þ ¼ uðx ¼ LÞ ¼ 0 ðtwo rigid boundariesÞ (4a)
uðx ¼ 0Þ ¼ 0; @u=@xðx ¼ LÞ ¼ 0 ðone rigid and free boundaryÞ

(4b)

@u=@xðx ¼ 0Þ ¼ 0; @u=@xðx ¼ LÞ ¼ 0 ðtwo free boundariesÞ (4c)

For boundary conditions (4a)–(4c), we expand the displacement
field in the resonator into series in the eigenfunctions cn

(sinusoidal in the discussed case):

uðxÞ ¼
X

i

AiðtÞ sinðkixÞ; ki ¼ ðp=LÞi, (5a)

uðxÞ ¼
X

i

AiðtÞ sinðkixÞ; ki ¼ ðp=2LÞð2i� 1Þ, (5b)

uðxÞ ¼
X

i

AiðtÞ cosðkixÞ; ki ¼ ðp=LÞi, (5c)

In Eqs. (5a)–(5c), the eigenfunctions are non-normalized, so that
factors Ai directly correspond to the displacement amplitude in
each eigenmode.

Retaining in the nonlinear function F(ux) only the lowest
quadratic term with the nonlinear parameter b,

Fð@u=@xÞ ¼ bð@u=@xÞ2, (6)

and taking into account orthogonality of the eigenfunctions we
obtain from Eqs. (3), (5) and (6) the following equations for the
displacement amplitude An of nth eigenmode which interacts
with other modes due to the quadratic nonlinearity:

€An þ 2nn
_An þ c2

0k2
nAn ¼ b

c2
0

L

X
mp

kmkpAmApan
mp. (7)

Taking into account that knAn ¼ Sn is the strain amplitude for the
nth mode, we rewrite Eq. (7) as

€Sn þ 2nn
_Sn þo2

nSn ¼ bo2
n

X
mp

SmSpã
n
mp. (8)

The interaction coefficients ãn
mp will be specified below;

on ¼ c0kn is the nth mode eigenfrequency, and nn ¼ gk2
n=ð2rÞ is

the dissipation coefficient (in what follows, it will be more
convenient to pass to Q-factors Qn ¼ on/(2vn) of the correspond-
ing modes, which can readily be estimated from experimental
data).

For modes with the eigenfunctions cm, cp, and cn, the
interaction coefficients are related to the mode structures via
integrals of the form,Z L

0
cðnÞcðmÞx cðpÞxx dx

which yield the following coefficients ãn
mp (for boundary condi-

tions (4a)–(4c), respectively):

ãn
mp ¼

dn;p�m

2
ðwhere dn;p�m is the Kronecker deltaÞ, (9a)
ãn
mp ¼

4mpn½�1þ ð�1Þmþpþn
�

p½ðmþ pÞ2 � n2�½ðp�mÞ2 � n2�
. (9c)

To estimate the amplitudes of the modulation sidelobe corre-
sponding to nth mode we assume that initially the probe mode Sp

with strain amplitude Sð0Þp and frequency oð0Þp is excited in the
sample together with a low-frequency pump mode Sm with
amplitude Sð0Þm and frequency oð0Þm :

Sp ¼ Sð0Þp ½expðioð0Þp tÞ þ expð�ioð0Þp tÞ�=2, (10)
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Fig. 2. Averaged modulation spectrum (centered to zero frequency) for an intact

axle in experiments [16].
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Sm ¼ Sð0Þm ½expðioð0Þm tÞ þ expð�ioð0Þm tÞ�=2. (11)

Note that frequencies oð0Þp and oð0Þm do not necessarily coincide
with eigenfrequencies op and om of the closest pth and mth
modes. According to Eq. (8), these modes create for mode number
n (i.e., the modulation sidelobe), nonlinear sources pSmSp at
frequencies oð0Þp �oð0Þm . To estimate the maximum level of the
modulation, we assume that the combination frequency coincides
with the eigenfrequency on of the nth mode, on ¼ oð0Þp �oð0Þm .
Then Eq. (8) yields for the relative level of the resultant
modulation:

Sð0Þn

Sð0Þp

¼ Sð0Þm

on

4nn
bãn

mp ¼ Sð0Þm Qn
1

2
bãn

mp. (12)

Besides quite evident dependence on the pump strain amplitude
Sð0Þm , Q-factor Qn of the combination-frequency mode, and
nonlinearity coefficient b, the interaction essentially depends on
the mode spatial structures via the interaction coefficient ãn

mp. If
the frequencies of all three interacting modes coincide with the
sample eigenfrequencies (on ¼ op7om), then for a resonator
with two rigid boundaries (at which the reflected waves do not
experience phase jumps), the spatial-resonance condition
kp7km ¼ kn (equivalent to p7m ¼ n) is also satisfied and
corresponds to the coefficient ãn

mp ¼ 0:5. Assuming the typical
Q-factor value Qp�500y1000 for the probe-mode with numbers
p�50y60 and pump-strain amplitude Sð0Þm in the range
(0.5�1)�10�5 as in experiments [16] and taking the nonlinearity
parameter value b ¼ 3y6 (which is typical for homogeneous
solids [15]), we obtain the modulation-level estimate

Sn=Sð0Þp �� ð35 . . .45ÞdB: (13)

These values significantly exceed the simplest quasistatic estimate
discussed in the introduction which corresponds to Sn=Sð0Þp ��

ð85 . . .95ÞdB for the same assumptions as in estimate (13).
For samples with non-rigid boundaries, which produce mutual

phase shifts for interacting waves, the spatial and frequency
resonance conditions usually cannot be satisfied simultaneously
(except of very particular mode combinations m, p and n in the
case of a non-equidistant mode spectrum). Acoustically soft (free)
boundaries (Eq. (4c)) produce especially strong phase mismatch
resulting in zero interaction coefficient ãn

mp ¼ 0 when the inter-
acting-wave frequencies exactly coincide with the eigenfrequen-
cies (i.e., on ¼ op7om). However, this does not mean that the
modulation interaction is completely forbidden for such samples,
since quite non-negligible non-resonant interaction remains
possible. Consider, for example, the conditions of experiments
[16] in which the impact-excited pump corresponded to low-
numbers modes (e.g., m ¼ 1y5) in the frequency range of several
kHz and the ultrasonic probe wave in the range 50–70 kHz
corresponded to longitudinal-mode numbers p ¼ 50y70 in
resonating railway axles. Then for two free ends of the resonator,
Eq. (9c) indicates that for the pump-mode number m ¼ 2, the
probe-mode number P ¼ 60, and the combinational-component
numbers n ¼ 6072 (which satisfy the frequency condition
on ¼ op7om), the interaction is impossible since ãn

mp ¼ 0. Never-
theless, for the same frequencies op, om, and on, the sidelobe
mode n ¼ 62 can be excited due to non-resonant interaction of the
pump mode m ¼ 2 and the probe mode P ¼ 61a60+2, for which
ãn

mp ¼ 0:42 (i.e., comparable with ãn
mp ¼ 0:5 for the rigid boundary

conditions). Certainly, for the mode triplet m ¼ 2, n ¼ 62, and
P ¼ 61 the interaction is not optimal since for the frequency
condition op ¼ on7om, the mode P ¼ 61 participating in the
interaction is excited out of resonance. But for the considered
sufficiently high mode numbers Pb1, the relative intermode
distance is small, Dop�op/p5op and even non-resonant neigh-
boring modes can be excited fairly efficiently. For example, under
the same assumptions as in the estimate (13) (the probe-wave
frequencies �50y70 kHz and numbers p�50y70 and Q-factors
about 500), the difference between the levels of resonant and
neighboring non-resonant modes is only �20–25 dB. Correspond-
ingly, compared to the resonant estimate (13) for the sample with
rigid boundaries, the visible modulation depth should also be
�20–25 dB lower,

Sn=Sð0Þp �� ð55 . . .70ÞdB (14)

which still strongly exceeds the simplest quasistatic estimate
Sn=Sð0Þp �bSð0Þm �� ð85 . . .95ÞdB. It should be emphasized that
eventual additional influence of the dispersion (which can be
non-negligible for higher-number modes) does not change the
estimated range of the modulation depth. Indeed, for the rigid
boundaries, the additional dispersion-induced phase shift be-
tween the modes can decrease the resonant estimate (13) shifting
it closer to the out-of-resonance value (14), but for the phase-
inverting soft boundaries, this additional shift can on the contrary
improve the interaction conditions and shift the out-of-resonance
estimate (14) closer to the resonance case (13).

Note that in experiments, the interacting-wave frequencies
normally are varied in a sufficiently wide range to reduce the
uncertainty in the modulation level due to unknown exact
resonance and dispersion conditions. A typical averaged example
of such a modulation spectrum obtained in [16] for a reference
intact axle is shown in Fig. 2. The figure demonstrates that quite
conventional equipment used in [16] is sufficient to reliably
observe the modulation level comparable with estimate (14) and
even lower (since the probe wave level exceeds the background
noise by 80–100 dB). Preliminary tests indicated that the
nonlinearity of the electronics did not produce such well visible
combinational components whose origin can reasonably be
attributed to the atomic nonlinearity of the reference sample.
Unlike technical noises further improvement of the equipment
cannot eliminate this background modulation in principle.

The obtained estimates and the experimentally observed
background modulation consistently indicate that the atomic
nonlinearity is not negligible and determines the threshold level
of the hindering signal, which imposes the physical limitation on
the ultimate sensitivity of the nonlinear-acoustic approach. In
what follows, we compare this estimate with the modulation-
sidelobe level due to the presence of a crack-like defect in the
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sample in order to formulate the criteria of the threshold
(ultimate) sensitivity on the nonlinear-modulation approach.
3. Quasilinear and quasistatic estimation of the influence of
crack-like defects

In this section, using a perturbation approach we first consider
the influence of a crack-like defect on the sample eigenfrequencies
(which is in fact a linear effect). Then we estimate the level of
crack-induced modulation of a probe wave arising due to
modulation of the crack-opening (and, consequently, eigenfre-
quency modulation) by an additional acoustic excitation. This will
allow us to instructively compare the conventional linear
frequency-shift technique [19] of crack detection and the non-
linear approach.

To obtain the wave equation with allowance for the crack
presence, we use the Lagrangian approach. The sample is again
supposed to have a rod-shape geometry with the cross-section
area B0. In order to comprise the defect into the Lagrangian
density we use an instructive crack model which was earlier
successfully used in [20–22] to describe elastic properties of 3D
materials containing an ensemble of crack-like defects. In this
approach, cracks are considered as equivalent planar soft inclu-
sions characterized by the area B and thickness h5B1/2. The
inhomogeneity of the near-crack fields in this approach is not
considered and the crack contribution is accounted as an addition
to the elastic-energy density under conventional assumption that
crack’s size is much smaller than the characteristic scale of the
variation in the average strain ux in the material (in most cases
this is the elastic wave length). In the 3D analysis [20–22], such
defects were characterized by two effective elastic parameters
corresponding to the crack compliance with respect to the
external shear and normal (compressing) elastic stresses. For
our purpose to obtain the upper estimates of the crack influence,
it is sufficient to assume that the crack plane is oriented normally
to the sample axis such that the defect can be characterized by
one parameter of its normal compliance. Looking at the defect
from aside (i.e., from a distance several times exceeding its
diameter) it can be viewed as a planar ‘‘soft inclusion’’
characterized by the effective elastic modulus BE5E, where E is
the elastic modulus of the surrounding homogeneous matrix
material and B51 is the small parameter characterizing the
increased compliance of the defect.

Various particular rigorously derived crack models consistently
indicate that the above-introduced B is approximately equal to the
ratio of the crack opening h to its diameter D (i.e., its aspect ratio,
B�h/D): such a crack can completely be closed by creating in the
material the average strain S� approximately equal to its aspect
ratio S*�B�h/D�h/B1/2, where B is the crack cross-section [23].
Thus the (normal) compliance parameter B accounts for the local
enhancement in the ‘‘local strain’’: Dh/h�ux/B, where the variation
Dh in the crack opening is caused by the ambient stress s ¼ E@u/
@x. Then for the crack orthogonal to the sample axis, the elastic-
energy density Wdef related to the presence for the defect can be
written as

W ¼ dðx� x0ÞðBhÞE
ð@u=@xÞ2

ð2BÞ
¼ dðx� x0ÞB

3=2 ð@u=@xÞ2

2
, (15)

where d(..) is the Dirac delta-function, x0 is the coordinate of the
defect. The normalization factor before the delta function is the
well-known total elastic energy localized near the crack, which is
proportional to the volume of the sphere circumscribed around
the crack (i.e., the effective crack volume Ṽ�B3=2). Such an energy
approach developed in [20–22] leads to results consistent with
other models of elastic properties of crack-containing solids based
on particular crack models (e.g.,[23,24]) and gives additional
freedom in modeling the material elastic and dissipative proper-
ties for arbitrary ratios of the normal and shear compliance
parameters of the defects.

Combining Eq. (15) for the energy localized at the crack with
the conventional expression [26] for the density of the Lagrangian
in the homogeneous solid, we obtain the Lagrangian density per
unit length for the considered rod-shape sample containing a
crack-like defect at x ¼ x0:

L ¼ ð1=2Þ ð@u=@tÞ2 � Eð@u=@xÞ2
n o

B0

� dðx� x0ÞṼ
ð@u=@xÞ2

2
. (16)

Here, we yet neglect the nonlinearity of the crack and also omit
the distributed nonlinearity which has already been considered in
the previous section. By the conventional procedure [26] we
obtain form Eq. (16) the following wave equation:

@2u

@t2
� c2

0

@2u

@x2
� c2

0

@

@x
dðx� x0Þ

Ṽ

B0

@u

@x

� �
¼ 0. (17)

The boundary conditions for Eq. (17) are given by Eqs. (4a)–(4c).
Eq. (17) indicates that in the linear approximation, the effect of the
crack presence is determined by its effective volume Ṽ and is
practically independent on specific features of a particular crack
model.

Using Eq. (17) we can readily estimate the eigenfrequency
shifts due to the presence of the crack-like defect. As above
representing the displacement field as the superposition of the
sample eigenmodes u ¼

P
nAnc

ðnÞ
ðxÞ and substituting of this

expansion in Eq. (17) we obtain the system of equations for the
amplitudes An of the eigenmodes

X
n

€Anc
ðnÞ
ðxÞ � c2

0c
ðnÞ
xx An � c2

0

@

@x
dðx� x0Þ

Ṽ

B0
cðnÞx

� �
An

� �
¼ 0, (18)

where the subscript at cðnÞx denotes differentiation d/dx. To
estimate the crack-produced variations of the eigenfrequencies
we apply to Eq. (18) the perturbation approach (similar to that
used in quantum mechanics to estimate energy-level perturba-
tions [27]). In the zeroth order (i.e., in the absence of the defect),
the variables in Eq. (18) can be separated. The unperturbed
eigenfunctions c(n) satisfy the equation

€An

An
¼

c2
0c
ðnÞ
xx

cðnÞ
¼ �k2

nc2
0. (19)

The eigenvalues for the wavenumber k2
n (and the equivalent

eigenfrequencies o2
n ¼ c2

0k2
n) are determined by boundary condi-

tions (4a)–(4c) next order of the perturbation theory [27], one can
assume that the eigenfunction forms are approximately unper-
turbed and the perturbation (the presence of the defect) is
reduced to the perturbation of the eigenvalues: o2

n ! o2
n þ dðo2

nÞ.
Substituting the perturbed eigenvalues in Eq. (18) and taking into
account Eq. (19) we obtain

X
n

dðo2
nÞc
ðnÞ
ðxÞ þ c2

0

@

@x
dðx� x0Þ

Ṽ

B0
cðnÞx

� �� �
¼ 0. (20)

Using the orthogonality of the eigenfunctions c(n) we find the
required expression for the eigenfrequency perturbation:

dðo2
nÞ

o2
n

¼
c2

0

o2
n

½cðnÞx ðx0Þ�
2 2Ṽ

S0L
¼

1

k2
n

½cðnÞx ðx0Þ�
2 2Ṽ

V0
, (21)

where V0 ¼ B0L is the sample volume, cðnÞx is the derivative of the
eigenfunction for the particle displacements with respect to x (so
cðnÞx is the eigenfunction for strain) and combination cðnÞx =kn

corresponds to the displacement eigenfunctions c(n) with
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maximum values equal to unity. Eq. (21) shows that the relative
variation in the nth mode eigenfrequency is entirely determined
by the crack position x0 and the ratio of the effective volume Ṽ of
the defect to the volume V0 of the sample. In the strain nodes
(cðnÞx ðx0Þ ¼ 0), the crack does not affect the corresponding
eigenfrequency and in the antinodes (where ½cðnÞx ðx0Þ=kn�

2 ¼ 1),
the crack effect is maximum, such that

don=on 	 Ṽ=V0. (22)

If this eigenfrequency shift exceeds certain threshold value (don/
on)th, the conclusion on the presence a crack can be made [19].
Therefore, the minimal size of the detectable crack (in terms of the
effective crack volume Ṽ�D3) is determined by the threshold
value (don/on)th, such that Eq. (22) can be rewritten as

Ṽ 
 ðdon=onÞthV0. (23)

Typically it is assumed that meaningful variations in the sample
frequency should be on the order of at least 2y5% [19], because
smaller variations can be caused by many other factors (e.g.,
temperature variations) not related to the damage. Since the
sample volume is proportional to the third power of its
characteristic linear dimension, it follows from Eq. (23) that this
meaningful threshold variation (don/on)th�(2y5)�10�2 is only
reached if the crack size reaches 20–40% of the entire sample size
(and for elongated rod-shape samples, the detectable crack
size can even reach 50–60% of the sample diameter). Such a large
size of detectable defects is normally unacceptable from the
viewpoint of security, but significant reduction in the threshold
(don/on)th is not possible in view of strong increase of false
alarms. Therefore, other ways of improving the detection
sensitivity are of evident interest, in particular, the nonlinear-
modulation techniques.

From this point of view, relationship (23) readily allows one to
estimate of the detectable defect size in the nonlinear-modulation
methodology. To this end, we recall that the effective volume Ṽ of
the defect can be modulated by an additional acoustic action
(pump). As it was already mentioned, the average strain u�x �

S��h=D in the material is able to completely close the crack with
opening h and characteristic size D. Therefore, the dependence of
the effective volume variation DṼ on the average strain in the
sample can be approximated by the following evident expression:

DṼ � ðS=S�ÞṼ . (24)

According to Eq. (21), this variation in the effective crack volume
should produce corresponding variations in the eigenfrequencies
on. In turn, the variation in the sample eigenfrequency causes the
amplitude-phase modulation of a probe wave excited in the vicinity
of this sample resonance. The resultant modulation depth for the
probe wave can be especially simply estimated in the approxima-
tion of sufficiently slow modulation. We first assume that the
characteristic modulation period Tm is larger than the characteristic
transient time of resonant excitation of the considered eigenmode
(i.e., Tm4Qn/on, where Qn is the mode Q-factor). This means that the
current amplitude of the probe wave is determined by the current
value of the nearest resonance frequency.

Near the eigenmode number p, the probe-wave amplitude is
described by an equation with the left-hand side coinciding with
that of Eqs. (7) and (8) and with an external probe-wave source
Fext(t) in the right-hand side:

€Sp þ 2np
_Sp þo2

pSp ¼ FextðtÞ. (25)

For a sinusoidal source FextðtÞ ¼ F0 expðiotÞ, the resultant ampli-
tude Ap is given by the expression

Sp ¼
F0

ðo2
p �o2Þ þ 2inpo

. (26)
Correspondingly, the mode intensity is

Ip � jSpj
2 ¼

jFpj
2

ðo2
p �o2Þ

2
þ 4o2o2

p=Q2
p

. (27)

For sufficiently small detuning |op�o|5op and sufficiently high
Q-factor Qpb1, Eq. (27) for the normalized intensity Ĩ ¼ I=Imax can
be approximated by a Lorentzian curve

Ĩn ¼
1

½2Qnðon �oÞ=on�
2 þ 1

¼
1

ð2QnDÞ2 þ 1
, (28)

where D ¼ (on�o)/on is the dimensionless detuning. For this
function, the maximum derivative dĨn=dD ¼ 3

ffiffiffi
3
p

Qp=4 � Qp is
reached for the initial detuning D ¼ 2DQp ¼ 1=

ffiffiffi
3
p

(i.e., at the
resonance slope). Therefore, for a probe wave excited at the
resonance-curve slope, the additional acoustic-pump action Sð0Þm

should produce the variable detuning D ¼ DðSð0Þm Þwhich, according
to Eqs. (26)–(28), produces the variation in the probe-wave
amplitude

jDSp=Spj � QpDðS
ð0Þ
m Þ. (29)

By virtue of Eqs. (21) and (24) we then obtain that the modulation
of the probe-wave amplitude is related to the pump amplitude Sð0Þm

by

DSp

Sp
� Qp

Sð0Þm

S�
Ṽ

V0

1

k2
n

½cðnÞx ðx0Þ�
2 	 Qp

Sð0Þm

S�
Ṽ

V0
. (30)

Now we have to compare this crack-induced modulation level
DSp/Sp given by Eq. (30) with the relative sidelobe amplitude Sn/Sp

given by Eq. (12) for the background (hindering) modulation
produced by the distributed atomic nonlinearity of the sample.
Since for sufficiently high-number modes the Q-factors are
comparable, QnEQp, comparison of Eqs. (30) and (12) gives us
the required criterion of the threshold effective volume Ṽ of
detectable cracks:

Ṽ

S�V0
�bãn

mp=2. (31)

Note that the parameter combination bãn
mp=2 in the right-hand

side of Eq. (31) is on the order of unity for the most part of
materials, such that the threshold effective volume of the crack
can be written as

Ṽ 
 V0S� (32)

The structure of Eq. (32) is similar to that of estimate (23)
obtained for the conventional frequency-shift technique [19].
However, in contrast to Eq. (23), in which the threshold frequency
variation (don/on)th is on the order of (2y5)�10�2 [19], in
Eq. (32), the same role is played by the much smaller factor S*
which is closely related to the softness of the crack and is
approximately equal to the crack aspect ratio, S*�h/D. We
underscore that estimate (32) is fairly universal and does not
depend on details of a particular crack model. Eq. (32) clearly
indicates that in the nonlinear-modulation approach, not only the
crack size, but also the crack softness (and, consequently, its
aspect ratio) plays the key role. It is known that for thin cracks, the
aspect ratio and thus the factor S� in Eq. (32) can be as small as
S*�10�5 and even less. Thus, the comparison of Eqs. (23) and (32)
containing the factors (don/on)th�(1y2)�10�2 and S*�10�5,
respectively, demonstrates the superior sensitivity of the non-
linear-modulation approach, especially for detection of just
appearing thin cracks.

As an instructive example, let us consider a typical railway axle
with length �2 m and radius varying within 7–9 cm correspond-
ing to the sample volume V0E0.04 m3. Therefore, for thin cracks
with S��10�5

y10�6, Eq. (32) yields the threshold value of the
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effective crack volume Ṽ�4� ð10�7 . . .10�8
Þm3, which ensures

the probe-wave modulation depth comparable with the back-
ground modulation due to the atomic nonlinearity of the material.
This estimate corresponds to the characteristic crack size
D�Ṽ

1=3
�3 . . .7 mm. This means that a somewhat larger single

thin crack with the size D�10–15 mm can produce the modulation
of the probe wave at a level of �(40y30) dB which should
20–40 dB exceed the background level due to the atomic
nonlinearity estimated in the previous section. These estimates
well agree with the data obtained in experiments [16]. An
example of the modulation spectrum in an axle containing such
a single fatigue-induced crack is shown in Fig. 3 together with a
spectrum obtained for an intact axle in similar conditions.
4. Dynamic estimation of the modulation-level for a nonlinear
crack model

The instructive estimate of the crack-induced modulation in
the previous section is found in the quasistatic case where the
modulation is so slow that the probe-wave amplitude excited
close to a resonance is determined by the current resonance
position. Now we estimate the level of a non-quasistatic
modulation by combining the approaches used in two previous
sections.

Let us now retain the leading nonlinear term in the expression
describing the crack response to the applied stress (bearing in
mind that the main nonlinear correction is quadratic). Certainly,
for pump strains strongly exceeding the above introduced
characteristic strain S*�h/D, the crack should exhibit near-
complete closing and opening. Consequently, its nonlinearity
should become non-analytic (clapping/piecewise like discussed in
[6,7,13]) rather than quadratic. Additionally, adhesion and/or
frictional phenomena at the crack interfaces can result in
hysteretic effects [9]. However, bearing in mind that typically
S*�h/D is on the order of 10�3

y10�5, for moderately intensive
pump strains (e.g., S(0)r10�6

y10�5) often applied in practice, one
can use a quadratic approximation for the crack nonlinearity (like
in [8]). Experimentally, this is justified by the fact that quite often
the modulation sidelobes are near-linearly proportional to the
pump-wave amplitude in a fairly wide strain range, which
indicates a quadratic character of the nonlinearity (see, for
example, [7,8,14,16]) and only for stronger pump amplitudes, the
modulation level increases slower and often tends to saturation
[7,8]. Therefore, for moderate amplitudes, the quadratic approx-
imation is reasonable, so that the average stress s in the material
can be related to the local strain Sloc ¼ Dh/h characterizing the
variation in the crack opening h as

s ¼ SlocEeff ð1þ bcSlocÞ, (33)

where Eeff is the effective crack modulus (which is strongly
reduced compared to the elastic modulus of the intact material,
Eeff�BE) and bc the local parameter of the crack nonlinearity. To
estimate its value one can argue that in the first approximation
(neglecting the nonlinearity), the local strain Sloc and the mean
strain S are related via the parameter B of the crack softness,
Sloc ¼ S/B. On the other hand, we note that for the characteristic
strain S*�B causing the crack closure, the variation in the crack
opening is equal to its initial opening (Sloc�1) and the completely
closed crack is not soft anymore (i.e., the variation in its elastic
modulus is comparable with its initial value). This means that the
nonlinear term bcSloc in the braces in Eq. (33) is comparable with
unity (bcSloc�1) for Sloc�1. Therefore, the local nonlinearity
parameter is also on the order of unity, bc�1, which will be used
in the estimates below. Note that the considered approximation is
also consistent with Eq. (24) in the previous section, where we
also took into account that with increasing average strain the
effective volume of the crack gradually decreases and for
compressing strains S�S*�B, the crack is almost completely
closed.

The quadratic stress–strain relationship (33) corresponds to
retaining the cubic term in the expression for the crack energy, so
that instead of Eq. (15) we have

W ¼ dðx� x0ÞðBhÞE
ð@u=@xÞ2

2B þ bc

ð@u=@xÞ3

3B2

( )
(34)

Combining this expression with the Lagrangian density for the
homogenous matrix material (like in the derivation of Eq. (17)),
we obtain the following wave equation (in which again the atomic
nonlinearity is omitted):

@2u

@t2
� c2

0

@2u

@x2

� c2
0

@

@x
dðx� x0Þ

Bh

B0B
@u

@x
þ dðx� x0Þbc

Bh

B0B2

@u

@x

� �2
( )

¼ 0. (35)

Here, like for Eq. (18) we have to take into account that B�h/B1/2

and Bh=B0B�Ṽ=B0, where Ṽ�B3=2 and B�S*. Since for different
boundary conditions the results are very similar and differ only by
the phase of the sinusoidal eigenfunctions, below we limit
ourselves only to the case of free boundaries and perform a
procedure similar to that used above in the estimation of the
modulation due to the quadratic atomic nonlinearity. Using the
same assumptions on the initially excited probe and pump modes,
we come to the following equation for the combination-mode
strain (which is analogous to Eq. (8)):

€Sn þ 2nn
_Sn þ �o2

nSn ¼ bco2
n

2Ṽ

S�V0

X
mp

SmSp sinðkmx0Þ sinðkpx0Þ: (36)

Here, frequency �on of the nth mode is corrected in the first
approximation for the presence of the crack (as discussed in the
previous section). Considering again the resonance excitation of
the nth mode by the combination-frequency source created by the
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interaction of the pump mode Sð0Þm and the probe wave mode Sð0Þp ,
we obtain

Sð0Þn

Sð0Þp

¼ Qn
Sð0Þm

S�
Ṽ

V0
2bc sinðkmx0Þ sinðkpx0Þ�Qn

Sð0Þm

S�
Ṽ

V0
(37)

Here, we took into account that sinðkmx0Þ sinðkpx0Þ 	 1
and bc�1. Since Qn�Qp, it is clear that Eq. (37) agrees with the
quasistatic Eq. (30) with an accuracy of a factor of two (i.e., within
the accuracy of the initial assumptions) and all the numerical
estimates remain valid.
5. Conclusions

In the performed analysis we used well-established crack
properties consistently supported by different rigorous crack
models; the main conclusions and estimates are rather robust
with respect to fine details of the crack-nonlinearity models. The
analysis revealed the following critical factors. One key factor is
the maximal crack-produced variation in the sample eigenfre-
quencies (it is proportional to the effective crack volume Ṽ and
thus determines the ultimate sensitivity of conventional linear
methods [19] based on crack-produced change in eigenfrequen-
cies). In the nonlinear-modulation approach, there is an additional
key factor, the crack sensitivity to the acoustic-pump action,
which is conveniently characterized by strain S* required to
completely close a thin crack. The obtained results allowed us to
quantify the statements (see e.g., [5]) about the extremely high
sensitivity of the nonlinear-acoustic approach and to demonstrate
the similarity and differences and to compare ultimate sensitiv-
ities of the nonlinear-modulation technique and linear frequency-
shift approach. Certainly the actual sensitivity of both the linear
and nonlinear methods will be reduced if the conditions of
the crack interaction with sounding fields are unfavorable (i.e., the
crack is located near stress nodes or its plane is parallel to the
acoustic stress).

Although for clarity of the analysis we used a 1D model,
allowance for more complex mode structures will affect only the
values of the interaction coefficients for the distributed non-
linearity. These coefficients will be determined by 3D convolu-
tions of the type

R
cmð~rÞcpð~rÞd~r and the equivalent combinations

of the type cmð~r0Þcpð~r0Þ instead of sin(kmx0)sin(kpx0) in Eqs. (30)
and (37) for the localized defects’ nonlinearity. These modifica-
tions evidently cannot significantly affect the estimated propor-
tion between the contributions of the distributed and localized
nonlinearities. The same note remains valid if instead of the
modulation sidelobes we would compare the second harmonic
levels (although in practice this technique is less robust in terms
of the presence of parasite nonlinearities in the equipment and in
the sample support).

The comparison with typical nonlinear-modulation experi-
ments [16] has shown that the modulation level observed in intact
reference samples is within the theoretically estimated range,
which means that for presently available experimental equip-
ment, the distributed atomic nonlinearity (rather than technical
nonlinearities) can already become the main physical factor which
limits the ultimate (threshold) sensitivity of the nonlinear-
acoustic methodology of crack detection based on the observation
of first-order combination components.

To further increase the ultimate sensitivity of the nonlinear-
acoustic methods, instead of the considered conventional mod-
ulation or second-harmonic generation, one can use higher-order
nonlinear effects, for which the background contribution of the
atomic nonlinearity can be significantly lower. On the other hand,
due to non-classical features of crack’s nonlinearity, the intensity
of such effects in samples with cracks can be comparable with
lower-order nonlinear effects. For example, the cross-modulation
and cascade modulation interactions (higher-order in conven-
tional terms) can be proposed [28,29]. To describe such effects,
certainly the quadratic approximation is insufficient and more
fine features of crack’s nonlinearity (e.g., its non-analyticity
typical of hysteretic or clapping-contact nonlinearity) are essen-
tial. Since for higher-order interactions the level of hindering
effects due the atomic nonlinearity should be drastically lower,
the physical limit of the ultimate detection sensitivity can be
strongly improved. However, for such an approach, instead of the
atomic nonlinearity the main problem should become the
reduction of hindering non-quadratic technical nonlinearities in
the electronics, transducers (including their coupling to the
sample) and sample-supporting systems. The same note relates
to the reduction of ambient noises. Despite these difficulties, there
are reasons (see e.g., [25,26]) to expect that this way can be
promising for further increase in the sensitivity of the nonlinear-
acoustic approach.
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