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INTRODUCTION

River sand is one of the interesting and unusual
media that are still poorly studied in nonlinear acous-
tics. Due to the soft contacts between individual parti-
cles of the medium (grains of sand), the propagation of
elastic waves in river sand is characterized by high non-
linearity, high attenuation, and low velocity. Taken
together, these properties make it possible to perform
various experiments on nonlinear acoustic wave propa-
gation and interaction under controlled laboratory con-
ditions by using small amounts of the material. On the
other hand, since river sand is a natural medium, the
nonlinear wave propagation in it can (in some cases) be
studied and modeled under conditions that are rather
close to the field conditions.

Many researchers have experimentally studied
acoustic wave propagation in river sand (and similar
granular media) [1–16]. Nevertheless, no indications of
nonlinear acoustic properties in such highly nonlinear
media were mentioned in the majority of these works,
while the effects observed and apparently caused by the
nonlinearity were either ignored or misinterpreted (see,
e.g., [9, 15, 16]). It should be noted that the acoustic
nonlinearity of granular media is so high that the obser-
vation and study of, for example, the effect of self-
demodulation of high-frequency (HF) acoustic pulses
does not actually require any complex equipment
(which is necessary to study nonlinear effects in con-
ventional weakly nonlinear media). Due to the high
nonlinearity of the granular medium, HF acoustic
pulses excited in it undergo demodulation so that
intense secondary low-frequency (LF) video pulses are
generated, which propagate with a much lower attenu-
ation than the rapidly decaying (near the pumping radi-
ator) primary HF pulses. When receiving these rela-

tively weak secondary pulses, there is no necessity to
suppress the spectral components of the intense HF
pumping pulses or to use equipment with a wide
dynamic range. It should also be noted that the phase of
the demodulated video pulses is independent of the
phase of the pumping HF pulses and is determined by
the sign of the medium’s nonlinearity parameter alone,
so that, even if the phase of the primary pulses excited
in the medium is random, coherent LF pulses are gen-
erated and propagate in it. Therefore, coherent accumu-
lation can be used to detect and extract from noise the
demodulated pulses even for a random phase of the
pump. Also, the property that the phase of the demodu-
lated pulse is independent of the phase of the primary
HF pulse can be used in experiments to check whether
the received LF signal is actually a result of demodula-
tion rather than of penetration of low-frequency com-
ponents of the intense HF pumping pulse.

The effect of self-demodulation of HF acoustic
pulses in river sand was first observed and thoroughly
(experimentally and theoretically) studied in [5–8].
These experiments used dry sand or almost completely
water-saturated sand, which was immersed into water
so that its water saturation was close to unity. The anal-
ysis of the results obtained showed that, although the
waveform of LF pulses demodulated in dry and water-
saturated river sand is the same and their amplitude and
propagation velocity depend, respectively, on the pri-
mary HF pulse amplitude and on the static pressure in
the same manner, certain characteristics of LF pulses
demodulated in these media, in particular, the depen-
dences of their amplitude and duration on the static
pressure, are qualitatively different, which is, in princi-
ple, a diagnostic criterion allowing one to distinguish
dry sand from water-saturated sand.
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This paper describes similar (to those reported in
[5–8]) experimental and theoretical studies of self-
demodulation of HF acoustic pulses and propagation of
the LF pulses in partially water-saturated river sand.
Results of these studies will be used to show that HF
pulse demodulation in this medium is qualitatively dif-
ferent in its character from that observed in dry and in
almost completely water-saturated sand.

IDEA OF THE EXPERIMENT

The measurements used the experimental setup
were described in [5–7] with the only difference that
partially saturated river sand was produced by pouring
water into dry sand (rather than by putting sand into
water); as a result, air bubbles could remain in the sand
(in voids between the sand grains), so that water satura-
tion of sand was less than unity. Due to thin liquid lay-
ers (“bridges”), the presence of gas in this three-phase
medium apparently causes surface tension forces,
which, on the one hand, weaken the Hertz-type clap-
ping nonlinearity (which breaks contacts between
loosely pressed grains) and, on the other hand, favor the
capillary nonlinearity of thin liquid layers [17]. As a
result, the nonlinear acoustic properties of partially

water-saturated river sand qualitatively differ from the
nonlinear properties of both dry sand and completely
water-saturated sand, in which the clapping nonlinear-
ity predominates.

EXPERIMENTAL RESULTS

As in [5–8], the excitation of short (

 

T

 

1

 

 = 80 

 

µ

 

s) and
long (

 

T

 

2

 

 = 1300 

 

µ

 

s) HF acoustic pulses at a frequency
of 

 

f

 

 = 180 kHz was accompanied by the self-demodula-
tion effect. Oscillograms of envelopes of the radiated
HF pulses and of the waveforms of the demodulated LF
pulses received by an accelerometer are shown in
Figs. 1a and 1b; their shape (as in [5–8]) is close to the
third time derivative of the envelope of the HF pumping
pulse and, therefore, the parametric radiator operated in
the Westerwelt mode [18, 19]. When the static pressure

 

P

 

0

 

 in the sand increases, the duration 

 

T

 

 = 

 

T

 

(

 

P

 

0

 

)

 

 (see
notations in Fig. 1a) of the demodulated video pulses
decreases (Fig. 2), because the attenuation in sand
decreases, whereas their propagation velocity 

 

C

 

 =

 

C

 

(

 

P

 

0

 

)

 

 and amplitude 

 

A

 

 = 

 

A

 

(

 

P

 

0

 

)

 

 increase (Figs. 3 and
4). The following dependences are valid in the range

 

P

 

0

 

 

 

≥

 

 2 

 

×

 

 10

 

3

 

 Pa (when the pressure in sand is prima-
rily determined by a system of weights with a mass
of 

 

M

 

 

 

≥

 

 

 

5.6

 

 kg):
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 Oscillograms of (a) short and (b) long demodulated
LF pulses received by the accelerometer.
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 Duration of LF pulses versus the static pressure. The
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Here, as in [5–8], the function 

 

C

 

 = 

 

C

 

(

 

P

 

0

 

)

 

 corresponds to
the Hertzian dependence of the static pressure 

 

P

 

0

 

 on
static compressive strain 

 

ε

 

0

 

 [20–22]:

 

(4)

 

This expression, in the linear approximation, yields the
equation of state (i.e., the relation between acoustic
stress 

 

σ

 

 and strain 

 

ε

 

)

 

(5)

 

Figure 5 shows the amplitude 

 

A

 

0

 

 of the demodulated
LF pulses as a function of the amplitude 

 

ε

 

0

 

 of short HF
pumping pulses (at 

 

P

 

0

 

 = 10

 

4

 

 Pa). As can be seen from this
figure, in the range 
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×

 

 10

 

–6

 

 

 

≤

 

 

 

ε

 

0

 

 

 

≤

 

 1.2 

 

×

 

 10

 

–5

 

, the relation

 

A

 

0

 

 ~ 

 

, where 

 

n

 

 

 

≅

 

 2

 

, is valid and, therefore, acoustic non-
linearity in the range 

 

5 

 

×

 

 10

 

–6

 

 

 

≤

 

 

 

ε

 

0

 

 

 

≤

 

 1.2 

 

×

 

 10

 

–5

 

 must be
quadratic rather than Hertzian (

 

n

 

 

 

≅

 

 3/2

 

) for both dry and
completely water-saturated sand. The reason for this may
be the effect of surface tension of thin liquid layers that lie
between the sand grains and border on gas, which first of
all affects the properties of a considerable part of weak
contacts, for which static strain is much smaller than the
average strain and which are responsible for the acoustic
nonlinearity in sand with the Hertzian exponent 

 

n

 

 = 3/2
[5–8, 23]. Thus, to analytically describe the quadratic
demodulation of HF pulses and the propagation of LF
video pulses in partially water-saturated sand, equation of
state (5) should be supplemented with the quadratic non-
linearity term 

 

α

 

(P0)ε2 and a dissipation term, which is
responsible for the attenuation of acoustic waves:

(6)

P0 B ε0( )3/2
, B const.= =

σ ε P0,( ) 3/2( )B2/3P0
1/3ε.=

ε0
n

σ ε P0,( ) 3/2( )B2/3P0
1/3ε α P0( )ε2– L P0 ε̇,( ),+=

where L(P0, ) is the linear operator, which determines
the frequency dependence of the damping constant of
acoustic waves in sand.

Now, let us use equation of state (6) to describe the
processes observed in the experiments (in the pressure
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range P0 ≥ 2 × 103 Pa) and determine the parameters
of this equation. Let the boundary condition at the
radiator be

(7)

where Π(r/a) = 1 for r/a ≤ 1 and Π(r/a) = 0 for r/a > 1,
a is the radius of the radiator, and Φ(t/T0) and T0 are the
envelope and duration of the HF pumping pulse. After
some algebraic transformations similar to those per-
formed in [5–8], we obtain an expression for the
demodulated pulse received by an accelerometer
located in the far-field region on the radiator axis:

(8)

where τ = t – z/C(P0), ρ is the density, and β1, 2(P0) =
θ1, 2(P0)/2πC(P0) with β1, 2(P0) and θ1, 2(P0) being the
HF and LF coefficients and damping constants, respec-
tively. (We assume here that the damping constant
θ2(P0) of river sand in the LF range is independent of
frequency (see review [24]).)

For the pumping pulse envelope in the form Φ(τ/T0) =
[1 + (τ/T0)2]–1/2, the integral in Eq. (8) can be calculated
explicitly. In this case, the waveform A(τ, z), amplitude

�1 r z 0 t,=,( ) ε0Π r/a( )Φ t/T0( ) ωt,sin=

A τ z,( )
a2α P0( )ε0

2

8πρC3 P0( )z
------------------------------ ∂

∂τ
-----–=

× Ω2Φ2 τ'/T0( ) 2β1 P0( )ωz'–[ ]exp

∞–

∞

∫
∞–

∞

∫
0

z

∫

× β2 P0( ) Ω z– jΩ τ' τ–( )–[ ]dz'dτ'dΩ,exp

A(P0), and duration T(P0) of the demodulated LF pulse
are determined by the expressions (at 2β1(P0)ωz � 1)

(9)

(10)

(11)

where γ(P0) = α(P0)/ρC2(P0) is the quadratic nonlinear-
ity parameter.

Certain acoustic parameters of partially water-sat-
urated sand can be estimated by comparing experi-
mental (1)–(3) and theoretical (9)–(11) dependences.
First, we set T0 ≅ 50 µs and use Fig. 6 and Eq. (11) to
determine the LF coefficient β2 = β2(P0) and damping
constant θ2(P0): β2(P0) ~ (P0/Pm)–1/8, θ2(P0) ≈
θm(P0/Pm)q, where Pm = 104 Pa, q = 1/24, and θm = 1.3.
Note that, here, the damping constant slowly but notice-
ably grows with pressure P0, unlike the behavior
observed in almost completely water-saturated sand,
for which the damping constant decreases as a power
function with the exponent q = –1/3 as the pressure
increases [5–8].

Further, Eq. (10) yields the expression for the
dimensionless ratio Γ(P0) = γ(P0)/θ1(P0) of the qua-
dratic nonlinearity parameter to the HF damping con-
stant; this important characteristic of the medium deter-
mines the efficiency of the parametric acoustic radiator
[18, 19]. Figure 7 shows the function Γ = Γ(P0)
obtained for the dependences A = A(P0) and T = T(P0)
determined above at a = 4 cm, ε0 = 10–5, ω = 2π × 1.8 ×
105 s–1, T0 = 50 µs, C0 ≅ 3.1 × 104 cm/s, and z = 11 cm.
It can be seen that, for the partially water-saturated
sand, the ratio Γ = Γ(P0) noticeably grows (Γ(P0) ~

) with increasing static pressure P0, unlike the
behavior observed in [5–8], where this ratio was found

to fall for dry sand (Γ(P0) ~ ) and for almost com-
pletely water-saturated sand. (Recall, however, that the
nonlinearity of the medium in the latter cases was Hert-
zian rather than quadratic.)

Finally, note that, to explain the high amplitude of
the demodulated pulse (and the dependence of its

amplitude as ~ ) in dry and completely water-satu-
rated sand, we proposed [5–8] to take into account
loose intergrain contacts. Their number in the medium
can be comparable to or even greater than the number
of average-loaded contacts with the static compressive
strain ε0, which determine the elastic modulus of the
granular medium. As shown in [14, 23], loose contacts
with the loading µε0 at a small parameter µ � 1 (µ ≈ 1
characterizes the average-loaded contacts) give a negli-
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Fig. 6. Function T(P0) – T0 = β(P0)z versus the static pres-
sure. The straight line represents the function β(P0) ~
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gible contribution ~µ1/2 � 1 to the elastic modulus;
however, they are the very factor that provide the dom-
inant contribution ~µ–1/2 � 1 to the quadratic nonlinear-
ity at small pumping wave amplitudes ε0 < µε0. At high
amplitudes ε0 > µε0, the loose contacts start “clapping”
and produce the Hertzian nonlinearity. For the depen-
dence of the amplitude of the demodulated pulse on
loose contacts, the shape of their distribution function
n = n(µ) at µ � 1 is very important. The resulting
behavior of the amplitude of the demodulated pulse as

~  is observed only when the distribution n = n(µ) is
strongly localized near the zero values (this was the dis-
tribution used in [5–8]). When the distribution n = n(µ)
is close to the uniform distribution n(µ) = const, the
proportion of the clapping contacts increases with the
pumping amplitude ε0, so that the amplitude of the
demodulated pulse grows faster than prescribed by the

Hertzian law (~ ) and the behavior remains close to

~ , although it is produced by the clapping contacts.
Until the strain ε0 ~ 10–5 exceeds the average static
strain ε0, the amplitude of the demodulated pulse
appears to be noticeably higher (for example, by almost
an order of magnitude when the numbers of loose and
average-loaded contacts are comparable [14], which is
typical of granular media) than could be expected for
the quadratic nonlinearity of average-loaded contacts in
the granular skeleton, because (ε0/ε0)3/2 � (ε0/ε0)2 until
ε0 ~ ε0. In this situation, the nonlinear term in the equa-
tion of state remains smaller than the linear term also
until ε0 ~ ε0. These arguments show that we should
actually expect a similar behavior (and level) of the
acoustic nonlinearity of dry and water-saturated sand
[5–8], because the total saturation with a liquid must
not noticeably change the distribution function of loose
contacts, which is strongly localized at µ � 1, this prop-
erty being typical of dry media [14]. Conversely, unlike
these extreme cases, the partial water saturation
strongly changes the character of acoustic nonlinearity
of the granular medium, which may be attributed to
capillary forces, whose effect on the weakest (and most
nonlinear) contacts is particularly high, connecting
them by capillary bridges and preventing them from
clapping. This modifies the n = n(µ) distribution by
eliminating its increasing behavior for low pressures
(µ � 1) and making the distribution function more uni-
form. The deficiency of data on the contact distribution
function in real granular media and the complexity of
describing the capillary effects prevent us from predict-
ing the resulting behavior of the nonlinearity versus
water content and static pressure in detail. One can,
however, expect that, under certain conditions, partially
water-saturated sand must exhibit a behavior transition
from the quadratic nonlinearity of closed contacts to the
clapping Hertzian nonlinearity at high pumping ampli-
tudes. Indeed, this transitional behavior of the demodu-

ε0
3/2

ε0
3/2

ε0
2

lated pulse amplitude from A(ε0) ~  to A(ε0) ~ 
was observed at ε0 ≈ 1.2 × 10–5 (see Fig. 5).

CONCLUSIONS

In this paper, we presented experimental and theo-
retical results on the demodulation of HF acoustic
pulses and on the propagation of the LF pulses in par-
tially water-saturated river sand. It was found that the
acoustic nonlinearity of this three-phase medium is
quadratic in a substantial part of the pumping amplitude
range (up to ε0 ~ ε0), unlike the Hertzian clapping con-
tact nonlinearity observed in both dry and almost com-
pletely water-saturated river sand [5–8]. This difference
is presumably caused by capillary forces in thin liquid
“bridges” between the grains, which (i) change the dis-
tribution of the weakly compressed grains, i.e., the
most nonlinear ones, in the initial pressure, (ii) prevent
them from exhibiting their clapping behavior, and
(iii) favor the capillary and viscous nonlinearity of thin
liquid layers between the grains. It should apparently
be expected that the quadratic nonlinearity parameter of
partially water-saturated sand depends on the concen-
tration of these bridges, which can be used to determine
the water content in the medium. To make this possible,
one should, however, formulate not a phenomenologi-
cal but a macroscopic equation of state whose basic
parameters (elasticity, nonlinearity, and attenuation)
depend on the structural characteristics of the medium
(grain packing, grain size distribution, grain concentra-
tion, surface tension and viscosity of the liquid, contact
angle, etc.).
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Fig. 7. Parameter Γ = Γ(P0) versus the static pressure. The

straight line represents the function Γ(P0) ~ .P0
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