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Abstract—Nonlinear generation and propagation of video-pulse signals produced as a result of the detection
of high-frequency acoustic pulses in dry and water-saturated river sand is studied theoretically. The waveform
of the video pulses, their amplitude against the amplitude of the primary wave, and the propagation velocity
versus static pressure are determined. The theoretical results are contrasted with experimental data to determine
the acoustic parameters of sand. These parameters are compared with the data on the nonlinear and dissipation

properties of granular media described in the literature.

PARAMETRIC GENERATION
AND PROPAGATION OF VIDEO-PULSES

In order to describe the processes of generation and
propagation of video-pulse signals under the conditions
of the experiment described in our earlier paper [1]
(such theoretical description being the subject of this
paper) we assume that river sand is an isotropic
medium and the elastic waves are longltudmal and
propagate along the z axis.

The equation of state of a nonlinear isotropic
medium can be presented in the form [2, 3]

Ou = KU;d; + 20Uy = (173)U;;8,) + Gu(Up), M
where K and p are the omnidirectional compression
and shear moduli, respectively; U = U, + Uy, + U,
and the functions G;(Uy) describe the nonlinear rela-
tionship between the stress (o) and strain (U,) tensors.
Generally, these functions should be determined theo-
retically on the basis of a model of the medium or
experimentally from some measured dependences, for
example, the elastic-wave velocity against static pres-
sure.

If planar strain is applied to an infinite medium in
the z direction. the transverse components U, and U,,
of the strain tensor are zero. In our expenmenls. we
dealt with quasiplane waves, therefore, one can assume
that the condition U.. > U, U,, was met. We also take
into account the fact that. under shear stress and stain,
an isotropic medium exhibits no even elastic nonlinear-
ity, while the odd nonlinearity does not provide the
detection process [3]. Thus, one should set G, (U;) =0
at [ # k in equation (1). Additionally, we take into
account that. in granular media, Poisson’s ratio is very
small (almost zero) [4-6]. Therefore, one can assume
that ©,. > G,. O, and G.. > G, G,, and ignore the
functions G and G,, in equation (9). By contrasting
equation (1) with the equations of state for dry and

water-saturated sand [1] at g = 0 (in terms of notations
introduced in [1])

o(e) = (3B/2)(-gy)"" .

e+a(-€) “h(-e€), (2)
(D +(3B/2)(-g0)'"*)e + a(~€) "h(~¢€), (3)

we obtain an expression for the function G..(€)
G,.(€) = a(-€)*h(-¢€), €= U... @)

Subsequently. we derive a nonlinear equation for an
acoustic beam propagating in an elastic medium by
using the technique developed in [7].

Represent the components of the vector of particle
displacement U in the acoustic beam in the form

U,28U,(1,x.¥,7), U, =8"U, (%, z'),(s)
where t=t-2z/c(2), 7' =08z, x' =8"x, y' =8"%y, dis the
small dimensionless parameter describing the slow
divergence of the acoustic beam [7], z is the depth, and
¢(z) is the depth-dependent local velocity of longitudi-
nal elastic waves in the medium. Henceforth, in order
to simplify our calculations, we assume that ¢(z) = ¢ =
¢ (P,). This approximation will not cause any funda-
mental or high errors in the final result at Py > 2 x 10° Pa,
because, under such conditions, the sound velocity in sand
is basically determined by the static pressure Py [1].

Substitute expressions (1) and (5) into the equation
describing the elastic wave propagation in solids (2, 3]

c(e) =

i _g___ !
pUy = axk(osr"'o';k)» (6)

where U, is the ith component of the vector of particle
displacement and o, is the inelastic stress tensor.

Note that, along with the description of nonlinear
elasticity, the description of dissipative (inelastic) prop-
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erties is one of the topical problems of acoustics of
inhomogeneous media including granular ones. For
homogeneous media, the inelastic stress tensor has the
form

Gy = 20 (Ui - 8,U;;/3) + 8, Uy, @)

where 1 and & are the viscosity coefficients, and the
sound dissipation factor is a quadratic function of fre-
quency [2]. For many microinhomogeneous media
(apparently, including the river sand), the attenuation
factor of an elastic wave is proportional to the first
power of its frequency [4, 5, 8], which means that the

form of the inelastic stress tensor o}, must be different

from (7). In this case, we describe the processes of the
video-pulse generation and propagation as follows. At
first, we describe these processes for a medium with the
quadratic frequency dependence of the attenuation fac-
tor and, then, in the final expression, we take into
account that the acoustic attenuation factor in sand lin-
early depends on frequency. We neglect the geometric
nonlinearity and use the linearized strain tensor U, =
(9U;/0x, + 0U,/9x;)/2 assuming that the nonlinearity of
the medium state equation is the dominant one.
Applying manipulations similar to those used in [7]

to equations (1) and (5)~(7), we obtain the wave equa-
tion for the longitudinal strain e = U.:

e . . e 1 & _
0197 ("/"')A.I.€ Bat;;"zpc;atgcz:(e) =0, (8

where B = ( + 41/3)/2pc® and A, is the Laplace oper-
ator with respect to the transverse coordinates.

We impose the boundary condition at the radiator in
the form

€ (r,z=0,1) = ElI(r/a)®(t/T)sinwr, (9)

where I'l(r/a) = 1 for r/la < 1 and I1(r/a) = O for rla > 1,
r* = x? +y?, a is the radiator radius, ©(¢/7) is the pump-
ing pulse envelope, T is the pumping pulse duration,
and w7 > 1.

We seek a solution to equation (8) with boundary
condition (9) by the perturbation method. We assume
that, in (8), (R, 1) = g(R, 1) + &(R, 1), where
&(R, 1) =% (R, T)sinwr. We also assume that, near the
radiator, where the pumping pulse attenuation and
video pulse generation predominantly occur, the rela-
tionship €,(R, 1) > |e.(R, 7)| is valid. Then, we obtain
an equation for the envelopes %,(R, 1) and £,(R, 1) of
the pumping and detected pulses, respectively:

a%‘é, -Bw’g, = 0, (10)

b

d 3
ﬁ——aZE:‘(C/Z)AJ_El—B;}Ez = Q(R, t), (n
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s
R,t) = ——(G.. ,
Q( T) 2 "at’< ..(sl))

pc

(12)

where (...) means averaging over the high-frequency
wave period. When deriving equation (10), we
neglected the diffraction effects assuming that the wave
is attenuated within the distance much less than the dif-
fraction wavelength ly;; = wa?/2c. (In the experiment
described in [1], the attenuation length of the pumping
wave was less than 1 cm, whereas /g, was about 5 m.)
By solving equation (10) with boundary condition -
(9), we find an expression for the pumping pulse near
the radiator (4nBz/T2 < 1) [9]: - :

£,(R, 1) = ,I1(r/a)exp(-B’z)®(t/T)sin m;m

Applying the Fourier transform to equation (11), we
obtain the diffraction equation for the spectral compo-
nents of the video pulse:

38,/ 9z + (j/2K)ALE, = Q(FQ, R),
where
&2 R) = (1/2m)exp(-BQ2) | (€. (T, R)exp(=jQu)dr,
K=QJ,

(14)

and
Qi R) = —(j/2nQ)exp(BQ’z)
R, -iQ1t)d
X_J‘:Q( T)exp(-jQr)dt 5
= - (jQ/4mpc)exp(BQz)

X j (G..[e\(T, R) Y exp(~jQr)dr.

The solution to equation (14) has the forrn [9]

EGR) = [Jo(vr)v
: 0 (16)
x[Q(v, &, JQexp(jvi(s-2)/2K)dzdv,
0

where 0 (v; z.J = [ 0 (2 RVo(vArdr.

Applying the inverse Fourier transform to equation

| (16), we obtain the general expression for the detected

pulse €,(, z) in the far-field region at the radiator axis:

-

a
82(1) Z) = 3
8rnzpc
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” jQ (G.(Boexp[-Bo’ z]d)(t/T)smm‘c))

0 —00 =0

17)

x exp(-BQ’z - jQ(T - 1))dzdTdQ.

When deriving expression (17), we assumed that the
parametric radiator was operated in the Westerwelt
mode [9], i.e., the dephasing of the secondary sources
Q(R, 1) across the beam was negligible: K*a*/4L = 0.5,
where K* = 2nF*/c and F* = 1/2T* is the characteristic
frequency of the video pulse.

For a wave travelling along the z axis, its strain and
acceleration parameters are related as A(T, z) =—c0gy(T,
z)/07. In the experiment, we recorded the acceleration
of the free surface of the plate, therefore, the waveform
of the pulse received by the accelerometer can be writ-
ten as

2

A T, ) 3
(v 4mzpcot

x j J’ J‘Qz(G::(‘éoexp[—Bmzz']ib(‘r’/T)sincm:'))

0 ~o0 —co
x exp(- BQ’z - jQ(T - 1))d7dTdQ.

From expression (18). it follows that the depen-
dence of the video pulse amplitude A, on the amplitude
€, of the pumping pulse is similar to that obtained in
the experiment (see expression (4) in [1]), because,

G..(g) = o(-€)**h(-¢) ~ “63/2. It also follows from
formula (18) that when the attenuation of the low-fre-
quency signal is low (BQ?z < 1), the video pulse wave-
form A(?) corresponds to the third time derivative of the
nonlinear function (G..[€,(1, z)]), which depends on the
envelope ®(#/T) of the pumping pulse. In the case of a
finite attenuation, the pulse waveform A(r) will be
slightly spread (due to the high-frequency attenuation),
but it will still be close to the third time derivative of the
nonlinear function (G..[g,(7, 2)]). Let us illustrate this

behavior hv examnles of annlno ?nlcpc with the

MASTS VWil

(18)

Cadaiipivs Vi Neiispsaaa

Gaussian and rectangular envelopes. In these cases,
analytical expressions for the detected signals can be
derived. Note that, in the experiment, the envelope of
the short pumping pulse was close to the Gaussian
shape, while the envelope of the long pumping pulse
was almost rectangular.

For the pumpmc pulse with the Gaussian envelope
@(t/T) = exp(-1*/T?), formula (18) yields

YHa2
; S 172
7cB(o'(l +6Bz/T)

329 3r/2
D g 22
° ar‘ . T+ 6Bz
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A(t) =

(19)
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where H =T?(1/4)/[9(2r)*?], [(**) is the gamma func-
tion, and y = a/pc? = (20/3B)(—€,)""/2 is the dimension-

‘less nonlinearity parameter. Note that the coefficient

20/3B is determined by the ratio between the numbers
of tight and loose contacts; for randomly packed grains,
the order of magnitude of this coefficient is equal to
unity [10, 11].

Expression (19) shows that the waveform A(¢) of the
video pulse, produced as a result of detection of the
high-frequency pulse with the Gaussian envelope, fol-
lows the third time derivative of this envelope extended
by a factor of [(2/3) + 4Bz/T?)"/2, Since an increase in
the static pressure Py decreases the attenuation factor of
elastic waves in a granular medium (and, consequently,
the factor B as well) [4, 12, 13], the video pulse duration
must also decrease.

From equation (19), the characteristic duration T*
and amplitude A, of the video pulse A(z) (see Figs. 2, 3
in [1]) can be calculated:

2 172
T* = T(1+6Bz/TY) , (20)

12 i,
3(32)" %11 - (1/6)'"?) yHa‘cem
2.2 ©0
:cho T'(1+ 6Bz/T")
Similarly, one can obtain an expression for the video
pulse A(z) produced as a result of the detection of the

high-frequency pulse with the rectangular envelope
O@/T) = h(t/T) - h(t/T-1):

Ay = 3}

‘/Ha2
o o Bz)m

x‘éo a re (4[;) exp(—-

]
4Bz /I
where H = T(1/4)2!2/36r.

In this expression, the summands exp(-r*/4Bz) and
—exp[—(t — T)*/4Bz] result from the single time differ-
entiation of the leading and trailing edges of the ini-
tially rectangular envelope of the pumping pulse and
from the subsequent high-frequency filtering due to
attenuation in the medium. Thus, in this case, the video
pulse waveform A(r) is also close to the third time
derivative of the pumping pulse envelope.

A(r) = -

When a periodic sequence of high-frequency pulses
is generated, the spectrum of the detected signal con-
tains the pulse repetition frequency F and its higher
harmonics. Substituting the modulating function

sin(2nt/T), 0<t<T/2

(23)
0. T/25tSNT/2

O/T) = {
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into equation (18), we obtain an expression for the
spectral components A( pF) of the detected signal:

T (1/4)ya(pF)’
12zcf o’
sin(np/N)exp[—B(anF)zz]% n
NT(7/4 + p/N)T(7/4=p/N) ° '
where F = I/NT and  is the duty factor.

A(pF) =
(24)

CALCULATION OF THE PARAMETERS
OF THE EQUATIONS OF STATE FOR DRY
AND WATER-SATURATED SAND

_ Let us try to estimate the attenuation length /, =
(Bw*™ of the pumping wave and the nonlinearity
parameter Y,, for dry sand at the maximum static pres-
sure Py = P, = 9 x 10° Pa (lgy| = €,, = 10~) by using
experimental results [1] and expressions (20) and (21),
derived under the assumption that the elastic wave
attenuation factor is a quadratic function of frequency.
We set the following values of other parameters
involved in these expressions: T = 40 ps; T* = 73 us;
z=L=10cm; P = 2.5 x 10° Pa (¢, = P/pc® = 2.85 x
107%); ¢ = 2.5 x 10* cmis; p =~ 1.4 g/em?; Ay = 1.2 x
102 cm/s? (B, = Ay/2ncF* = 1077 < B,).

Computations show that the attenuation length of
the pumping wave is /,, = 1.2 X 10~ c¢m and the nonlin-
earity parameter is y,, = 9 x 102,

However, these estimates are implausible, because
this attenuation length is too small (much less than the
grain size of sand) and the nonlinearity parameter is too
large, more than one order of magnitude higher than the
expected value Y= (—g,)~"/2 = 10~ (see the above discus-
sion on expression (19)). This result contradicts the
condition that the amplitude of the detected pulse is
small with respect to the pumping wave amplitude
(€4 < €,), which was fulfilled in the experiment. This
condition allows one to assume that the nonlinear term
in equation of state (2) is much less than the linear one
(i.e., (&p)~'> < 1) and to solve the problem by the per-
turbation method. If the value Y=y, = 9 x 10? is used,
one obtains ()2 = 5> |.

For water-saturated sand, the estimates of the atten-
uation length of the pumping wave and those of the
nonlinearity .parameter lead to similar discrepancies.
Computations show that, at T* = 83 us, Py =P, = 9 x
103 Pa (g,, = 107), §, = 2.85 x 107, A, = 34 cr/s®
(8, =Ay/2ncF* =3 %107 < %,). ¢ =~ 4 x 10* cm/s, and
p = 1.86 g/cm?, the attenuation length of the pumping
wave is /,, = 9 x 1073 cm and the nonlinearity parameter
is ¥, = 9.5 x 102. In this case, ¥(8)""/? = 5, which dis-
agrees with the condition €, < ¢,

Thus, these estimates of the attenuation length and
nonlinearity parameter. calculated for both dry and
water-saturated sand in the framework of the model of
the square frequency dependence of the attenuation
factor, disagree with the conditions of the experiment.

s

ZAITSEYV et al.

Next, let us try to describe the processes of the
detection and propagation of acoustic pulses on the
assumption that the attenuation factor for the elastic
waves in sand (as in many other rocks) is a linear func-
tion of frequency [4, 8, 13]. The dissipative properties
of such media are commonly characterized by the
dimensionless frequency-independent decrement 8, the
attenuation of an elastic wave of frequency ® being

determined as exp[—[g wz], where B = 8/2rc. For this

type of the elastic wave attenuation, an expression for
the detected pulse can be obtained by replacing the

coefficients Bw? and BQ? in (18) by Pw and BQ,
respectively:

2 9
v

A(T: Z) LR
4rzpcot

2 o0 oo

x j j J‘ Q*(G.(Boexp[-Boz 1®(/T)sinot)) o
0 —eo—co
X exp(- fin - jQ(1' -1))dZdt'dQ.

When analyzing this integral, it is convenient to
approximate the pumping pulse envelope by the
Lorentz-type function ®(t/T) = [l + (t/T)*]"**. In this
case,

2 5 a3
A(t) = — YHaT %3/-8[ 1

e ——— 0 ™ '_—__""'—"—-’],

zeBo(T + Bz) ar'ly 4 tzl(Bz +T)™H (26)
where H = I"*(1/4)/9(2r)*? and Y= ot/pc2. For the char-
acteristic pulse duration T* and pulse amplitude A, (see

Figs. 2a, 4a in [1]), the following expressions can be
obtained:

T* = T+z, 27

12 S
75(1-2/5"") YHQ'T 3
2.4 & = 4%0 .

) czBo(T + B2)

For the long pulse with the rectangular envelope,
one obtains S

Ao = (28)

T (-5

A() = —YH‘.I-‘@S/Zz

zcP o

(29)

o R
B+ (B +(r-T)
Here, as in the case of the quadratic frequency
dependence of the attenuation factor, the video pulse
A(t) waveform also follows the third time derivative of

the pumping pulse envelope.

When a periodic sequence of the high-frequency
pulses is radiated, an expression for the amplitudes
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A(pF) of the detected signal harmonics can be obtained
similarly to (24) in the form -

r’ T2 (1/4)ya*(pF)
12zcBw

sin(np/N)exp[-B(2npF)z] @
NT(7/4 + p/N)T(714 - p/N) °° °

Let us estimate the pumping wave attenuation

length £,, = (Bm @)™' and the nonlinearity parameter v,
for dry and water-saturated sand at the maximum static
pressure Py = P, =9 x 10° Pa by using expressions (27)
and (28). As a result, we obtain that /,, =~ 2.3 x 102 and
[, =2 x 107! cm, which corresponds to the decrements
6, = 0.61 and 1.1 for the dry and water-saturated sand,
respectively. These results agree well with the decre-
ment measured in sand by other researchers [13, 14].
The nonlinearity parameter calculated from (28) is y,, ~ 84
and 74 for dry and water-saturated sand, respectively,
which is in good agreement with the expected value
Ym = (€)% = 10% With these values of the nonlinear-
ity parameter, one obtains ¥,,(€)""2 = 0.4 < 1. The non-
linearity parameter estimated by formula (30) using the
amplitudes of the first three harmonics of the pulse rep-
etition frequency is also on the order of y, = 102
(between 80 and 230). Apparently, such scatter occurs,
because the modulation function used in the experiment
slightly differs from theoretical approximation (23).
Subsequently, we use the experimental results (see

Fig. 6 in [1]) to determine the parameter B as a function
of the static pressure P, for dry and water-saturated
sand. Expression (27) yields

T*-T = p:. 31)
The figure shows log(T* — T) = log(Bz) versus
log Py for dry and water-saturated sand. One can see

that, at Py 2 2 x 10? Pa, B as a function of P, has the
form

A(pF) =
(30

B(Po) = Bm(Po/P,)", (32)

where b = —1/6 and ~1/3 for dry and water-saturated
sand, respectively.

According to (32) and the dependence c(Py) ~ Py
(m = 1/6 for P,>2 x 10* Pa) established experimentally

[1], the decrement 8 = 21t[§ c is determined as

6(Po) = 8,(Po/P,)™. (33)

where g = 0 and 6,, = 0.61 for dry sand, and g = 1/3
and 6, = 1.1 for water-saturated sand.

Using the experimental dependences of the video
pulse velocity and amplitude versus pressure P, [1] and
relationship (32). we can determine the nonlinearity
No. 3 1999
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log((T* - /1 ps]
2.

2r

[
<D
T

1.8

1.6

14 L
1

W -

4
log[Py/1 Pa)

log(T* - T) versus logP, for (/) dry and (2) water-satu-
0

rated sand. The straight lines show the exponential func-

P S C V1 I 5=1/3
uons: (/) p = Py and(2) p = Py "

parameter ¥ as a function of static pressure P, from
expression (28):

Y(PO) = YM(PO/Pm)-rv (34)

where r = 1/5 and v,, = 84 for dry sand and r = 1/2 and
Y = 74 for water-saturated sand.

As we mentioned above [see the note after formula
(19)], the nonlinearity parameter is determined by the
value (a/B), which has the meaning of the ratio
between the numbers of tight and loose contacts: y =
o/pc® = (20/3B)(—gp)""2. In view of expression (34),
we obtain that this ratio only slightly depends on the

static pressure: o/B ~ Py, where s = 2/15 for dry sand
and s = 1/6 for water-saturated sand.

Thus, the assumption that the attenuation factor
characterizing the propagation of elastic waves in dry
and water-saturated sand is a linear function of fre-
quency allows one to adequately interpret the experi-
mental results and to obtain reasonable estimates of the
decrements and nonlinearity parameters for these
media at various static pressures.

SUMMARY

In this paper, the results of the experimental study of
the parametric generation and propagation of low-fre-
quency video-pulse signals in dry and water-saturated
river sand [1] are analyzed theoretically. The waveform
of the detected pulses observed in the experiment and
the dependence of their amplitude on the pumping
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wave amplitude as well as the dependence of their
propagation velocity on static pressure are explained.

The nonlinear equations of state of sand are pro-
posed. Their parameters and the dissipative sand char-
acteristics are calculated on the basis of the comparison
between the theoretical results and the experimental
data. It is shown that the description of the acoustic
pulse detection and propagation, in terms of the qua-
dratic frequency dependence of the attenuation factor
for elastic waves in sand, disagrees with the conditions
of the experiment. However, the assumption that the
attenuation factor is a linear function of frequency pro-
vides an adequate interpretation of the experimental
results.

The experimental data obtained and their theoretical
description can be used for analyzing seismic signals
and for the development of seismoacoustic sounding
methods—first of all, methods based on the use of non-
linear effects in diagnostics.
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