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Abstract. The paper discusses the potentialities of measuring nonlinear seismic
parameters of rocks by methods based on observation of phase modulation of
a weak sounding wave under the action of a different, more intensive field of

deformations.

The time required for signal stacking is estimated for several

variations of configuration and length of sounding ray paths. The schemes considered
are promising both for monitoring problems in earthquake-prone areas and seismic

prospecting.
1. Introduction

The vast majority of seismoacoustic sounding meth-
ods are based on measurements of linear seismoacoustic
parameters of a medium (seismic velocities and coeffi-
cients of attenuation and reflection). Conclusions made
on geological and rock structure in a sounding area are
drawn from empirical or theoretically derived relation-
ships between measured linear seismoacoustic parame-
ters of rock and its structural features of interest (e.g.,
porosity, fracturing, and liquid and gas content).

A new tendency in development of seismic sound-
ing methods is connected with the use of nonlinear
parameters of a medium [Nikolayev, 1981; Nikolayev
and Galkin, 1987]. Available experimental data (see
for example, Groshkov et al. [1990, 1991] and John-
son and Shankland [1987]) and theoretical calculations
[Belyayeva et al., 1993; Dunin, 1989] strongly support
the close connection between nonlinear seismoacoustic
parameters of a medium and 1its structure, properties,
and magnitude of internal stresses. We should em-
phasize here that the range of variation of nonlinear
parameters can be essentially higher (sometimes by a
few orders of magnitude) than a momentary change of
linear characteristics (numerous experimental proofs of
this can be found in the monograph by Gamburtsev
[1992] and references therein, while numerical model-
ing results are reviewed, for instance, by Belyayeva et
al. [1994]). Thus one may expect that the use of non-
linear parameters as informative characteristics in seis-
moacoustic sounding would be advantageous in provid-
ing valuable additional information.

The purpose of the present work is to analyze po-

Copyright 1996 by the American Geophysical Union.
1069-3513/96/3012-0005$18.00/1

tentialities of remote techniques applied for determina-
tion of nonlinear parameters of rocks based on mea-
surement of phase modulation of a weak sounding wave
subject to the action of a more intensive strain field pro-
duced by a harmonic source. Such methods were first
proposed by Japanese scientists for measuring nonlin-
earity in biologic tissues [Ichida et al., 1983; Sato et
al., 1985]. Belyayeva and Sutin [1992] have discussed
some possibilities of their seismic application using a
pulse pump wave. Nazarov [in press] applied a sim-
ilar one-dimensional pulse scheme of tomography for
studying dissipative nonlinearity, with attenuation of
a weak probe wave depending upon the presence of a
high-power pump wave.

2. Quantitative Characteristics of
Nonlinear Material Properties

The main feature of a nonlinear medium in connec-
tion with seismic waves consists in that parameters con-
trolling propagation of the waves (seismic velocity and
attenuation coefficient) depend upon deformation in a
medium and the wave itself. We note that nonlin-
earity can be both conservative (when an amplitude-
dependent characteristic is, for instance, the velocity
of wave propagation) and dissipative (amplitude-depe-
ndent losses). Below, we restrict ourselves with analy-
sis of nonlinearity of conservative type which is usually
observed in experiments [Groshkov et al., 1990, 1991;
Johnson and Shankland, 1987].

To understand interaction effects of seismoacoustic
waves and relevant methods of tomography of non-
linear parameters, we confine ourselves to a model of
an isotropic medium and consider interaction of lon-
gitudinal waves only. Interaction of shear waves is
of less interest for us, since, due to symmetry of dis-

1064



BELYAYEVA: TOMOGRAPHY OF ELASTIC NONLINEAR PARAMETERS

placements in such waves, their interaction does not
give rise to quadratic nonlinear effects which do un-
derlie the method offered. We will assume a medium
to be isotropic and comply with the equation of state
o = o(e), where o is a stress and ¢ relative longitudinal
deformation. We consider comparatively weak waves
which admit series expansion of the equation in the pa-

rameter £ = ¢ — gq:

(1)

1 1
o= 02(60)5‘1‘ 50’2/5(60)52 4+ 50’”’(50)53 +

where & = o(e) — o(e0).
It is common practice in nonlinear acoustics to intro-
duce linear and nonlinear parameters as follows:

M = 0'2(60)

I'= ol (e0)/(20%(c0))
B = oll.(c0)/(60%(c0))

—~
[U)
~—

or

[ = (1/2)pV (0V/00)
B = (1/6)p*V(8*V/do?)

(5)
(6)
The value M has a meaning of the linear modulus of lon-
gitudinal deformation determining the velocity of longi-
tudinal acoustic wave V = [M/p]*/? p is a density, and
the values I' and B are responsible for quadratic and
cubic effects respectively. Expansion (1) is valid under
assumption of small strains ¢, when changes of linear
parameters are small (e, Be? < 1); this condition is
generally met at ¢ < 1075,

We note that the equation of state o = o(g) can be of
a more complex, e.g., hysteretic form (a number of rep-
resentative examples can be found in the work by Vasi-
lyev [1991]). Nonlinear effects observed by Zimenkov
and Nazarov [1993] are also explainable by hysteretic
phenomena. However, rougher effective characteristics
like the nonlinear parameters (3) and (4) can be intro-
duced in these cases too.

We should emphasize that variability ranges of lin-
ear and nonlinear parameters can differ considerably for
most of media. Thus sound velocities of nearly all lig-
uids and elastic materials vary generally within a few
tens of percents and, occasionally, within an order of
magnitude (from several hundreds to several thousands
of meters per second), whereas nonlinear parameters
range within a few orders of magnitude depending upon
the inner structure of a material. Most of measure-
ments are concerned with the quadratic parameter I
whose values range from 3 to 10 for “ordinary” homo-
geneous materials such as air, water, and fused quartz,
etc. [Naugol’'nykh and Ostrovskiy, 1990], to 103-10%
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for media of “complex” structure, e.g., water with gas
bubbles [Kobelev and Ostrovskiy, 1980], porous plasti-
sols [Belyayeva and Timanin, 1991; Ostrovskiy, 1988,
1991], and many rocks [Gamburtsev, 1992; Groshkov et
al., 1990, 1991; Johnson and Shankland, 1987; Niko-
layev and Galkin, 1987; Zimenkov and Nazarov, 1993].
There are theoretical models that explain the observed
differences. Thus based on analysis of nonlinear elas-
tic properties of a granular medium saturated with gas
and fluid, Belyayeva et al. [1994] have shown that non-
linear parameters, as compared with the elastic wave
velocity, are much more sensitive to pressure and sat-
uration with gas and liquid. According to results of
their calculations, variation of the nonlinear parameter
at boundaries of fluid-bearing areas can be many times
as high as that of sound velocity, which is of interest for
geological exploration.

Estimates of nonlinear parameter variability in peri-
ods of seismic activity are quite intriguing. Available
data on variation of seismic velocities themselves in the
process of earthquake preparation are of diverse nature
and are often contradictory [Gamburtsev, 1992]. As for
the nonlinear parameter (coefficient of strain sensitiv-
ity), it is itself characterized by high strain sensitivity
[Gamburtsev, 1992; Nikolayev and Galkin, 1987], and so
its variation with rock deformation can serve as a sensi-
tive informative indicator of changes in the stress state
of a medium even in those situations when variations of
travel times do not exceed background values.

3. Probe Wave Phase Modulation Due
to a Pumping Wave

Measurements of elastic nonlinear parameters of a
medium are based on the effect of velocity change in
a weak acoustic wave (called a signal or probe wave)
due to nonlinearity of a medium under the action of a
strong field of another wave (called a pumping wave in
nonlinear acoustics). By (1)—(4), this relation can be
represented in the form

V=V({1+Te, +Be +--) (7)

where ¢, i1s the strain amplitude of the pumping wave
and V' is unperturbed velocity.

We shall use ray optics approximation for calcula-
tion of phase change in a probe wave. We note that
this approximation is applicable when the characteris-
tic scale of inhomogeneities is large as compared both
with the wavelength A and cross-sectional size of the
Fresnel volume d surrounding a ray path under con-
sideration. If a ray in a homogeneous space connects
points 1 and 2, then the cross-sectional diameter of
its Fresnel volume is determined by the relationship
d=2(Arira/ (1 —|—r2))1/2, where r; and 72 are distances
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from a given point of the ray path to the points 1 and 2
respectively [Kravisov and Orlov, 1980]. In this approx-
imation, the phase increment of the probe wave along
a sounding ray path in the interval where the ray co-
ordinate changes from {y to L can be expressed in the
form

lo

Using the smallness condition for velocity increment due
to the pump wave and (7) we have for the variation of
the probe wave phase

somu [a (L) am 1O,

lo lo

(1,) dl +
(8)

Here, L is the ray coordinate of a point of observation.
We shall consider the case of small deformations in the
pumping wave when Be,, < 1 and the main contribution
to the expansion of V (7) is given by the quadratic term.
From here on we will neglect the second term in (8) that
is responsible for cubic nonlinearity.

We consider the phase shift of a portion of the probe
wave determined by the ray coordinate [ = [, at the
moment ¢t = 0. At the moment ¢ its coordinate can be
found from the equation

L

oL

ls

)

In the general case of an inhomogeneous medium, this
equation has no analytical solution and hereinafter we
shall neglect velocity variation along the ray, 1.e., we
assume that V is an average velocity. The value of cor-
responding systematic error in arrival time determina-
tion has an order of relative variation of propagation
velocity along the ray path which, as a rule, is much
lower than unit for real stratifications. In this case (9)
gives | = [, + V¢, and the integral (8) can be written in
quadratic approximation as

o (58) = [ e (15

where (L —1,)/V is the time at which the portion of the
probe wave with the initial coordinate [, arrives at the
point of observation.

) i (10)
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Thus generally speaking, nonlinear phase variations
are connected in an integral manner with spatial dis-
tribution of nonlinear parameter(s) of interest for us so
that the kernel of integral transformation i1s determined
by the spatial-temporal structure of the pumping field.
In other words, we have a typical tomography problem
in determining spatial distribution of a value studied
(in our case, the nonlinearity parameter I') from a set
of its integral characteristics provided both analog and
digital processing of a set of such integrals is possible.
Spatial resolution by an analog method is attainable,
for instance, through time gating using a pulse pump
waveform. Some aspects of such approach as applied
to seismic problems were considered by Belyayeva and
Sutin [1992]. The present paper is mainly concerned
with reconstruction of a nonlinear parameter by means
of audio pumping for various spatial field distributions.

4. Conditions for Signal Detection
Against Noise

To examine the possibility of signal detection against
present noise, we consider conditions at which a signal
exceeds noise and which enable measurements of weak
modulation of a probe wave. We assume that the probe
wave source 18 highly stable and fluctuations of its pa-
rameters are much smaller than the nonlinear variations
discussed. Let the strain amplitude in a probe wave un-
der consideration be A, then, at weak phase modulation
A, the level of deformation in an useful signal can be
estimated from the relationship AA ~ AAg. Due to
this relationship, the signal to noise intensity ratio Sy
can be estimated like it was done by De Fazio et al.
[1973] and can be written in the form

(ApA)?

i N

(11)
where (¢2) is the level of spectral density of noise in the
1 Hz band observed at deformation measurement and T’
time of coherent signal stacking. The spectral density
in seismics 1s usually determined from measuring the
vibrational velocity. The spectral density of noise of vi-
brational velocity {o%) is connected with that of defor-
mation noise by the relationship (¢2) = (% )/(27V)2.
We note that (9) is written under assumption of signal
detection by a single receiver; an additional advantage
can be gained through the use of a receiver array.

5. A Homogeneous Pump Field

The field of natural tidal deformations used as a pump
wave appears to afford a simplest realization of the
above approach. In this case, even for rather extended
ray paths of about tens kilometers, we can consider the
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pump field to be homogeneous, £,(l;t) = &,(¢) and
quasi-static within the time interval of signal propaga-
tion along the path. The approximation of quadratic
nonlinearity being assumed, amount of nonlinear phase
variation of a probe wave can be represented in the form

L
()
Ap(t) = wep(t / % |~ pr25HL<F>/V (12)
0
where (---) stands for averaging along the ray trace.

Assuming that we know the acoustic velocity field
V(x,y,z) and density p(z,y, z) (or equivalent distribu-
tions p({) and V (/) along the ray trajectory), the am-
plitude of deformation in the probe wave field can be
written at ray approximation as

A(l) = exp(=0:0) Ao ([%(lo) plo) V ({o)] x

X< [EWp(V(H)7HH?

where X(!) is the cross section of the ray tube [Kostrov
and Orlov, 1980], A(ly) is the amplitude of the signal
wave at [ = [y (in what follows we assume, as is the
practice, [y = 1 m), and &, is the attenuation constant
of the signal wave.

Below, for the sake of preliminary evaluation, we as-
sume ray tubes to be spherically divergent (which is

(13)

valid for a homogeneous medium as well as for linear
dependence of the velocity V' on depth and fits well pro-
files of other types outside the vicinity of ray caustics).
Then, deformations at observational points can be esti-
mated from the formula A(l) = exp(—dgl)Ag/l. Based
on the expression for amplitude variations AA &~ AAgp,
with A¢p defined by (12), we obtain

L)/ L ~
o)D)/ V

in the case of weak attenuation the amplitude of

AA AgApexp(—
(14)
~ Agwey, (t) exp(—d
le.,
nonlinear variations of a signal wave is virtually inde-
pendent of distance. Thus the source of a probe wave
being sufficiently stable, observations of tidal period
nonlinear variations can be used for obtaining a path-
averaged value of quadratic nonlinear parameter. De
Fazio et al. [1973] report tidal variations of this kind ob-
served at the path length L ~ 300 m and probe wave fre-
quency 500 Hz. Accuracy required for measuring acous-
tic velocity variations amounted to AV/V ~ 10~* and
was achieved due to coherent signal stacking. On sub-
stituting the expression for the effective amplitude of a
signal (14) into (11), we obtain for the time of coherent
signal stacking:

2
P Sy T (20L)

Renrprejeres )
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where Sy is the signal to noise intensity ratio and L
limiting distance of observation. The following values
have been used for our estimates: nonlinearity param-
eter I' ~ 10* determined by De Fazio et al. [1973]
(Gamburtsev [1992] reports similar values T' and even
those which are by an order of magnitude higher),
sound velocity V' ~ 3 x 10 mps, spectral density
level of noise (02) ~ 6 x 10727 Hz~!, magnitude of
tidal deformations &, ~ 10~® | characteristic density
p ~ 3x10% kg m~3, and level of probe wave source field
Ap &~ 2 x 1077 m (which corresponds to emission of a
single pulse of acoustic power about 100 W). Powerful
vibrators are able to produce deformations of similar
levels, although their drawback is difficulty in obtaining
stable frequency of emission. High-stability emission
is attainable through the use of electrodynamic emit-
ters produced for hydroacoustic investigations; they de-
velop acoustic power to a few kilowatts [Levushkin and
Penkin, 1993].

Available experimental data on the attenuation con-
stant d indicate that it grows roughly proportional to
the frequency [Gurvich and Nomokonova, 1981]:

§=0/A=0f)V (16)

where @ averages to 7 x 1073 for hard rocks that are
of greatest interest for monitoring of regions of seismic
danger [Gurvich and Nomokonova, 1981]. As is clear
from (12) and (13), at a fixed distance L, there exists
an optimum frequency of the probe wave f which min-
imizes the required processing time:

f=Vv/L)

As aresult, we obtain for values of L chosen as 1, 10, and
20 km Tope ~ 2 x 1071 s (at fopr = 420 Hz), Tope & 20 s
(at fopt =42 Hz), and Tope &~ 1 min (at fope = 21 Hz),

respectively. The optimum frequency 4.2 Hz at the dis-
tance L = 100 km appears to be hardly attainable,
and the processing time estimate for this distance at
f & 20 Hz amounts to T" & 30-40 hour. Thus the use of
tidal deformations as a pump wave allows one to obtain
distance-averaged values of the nonlinearity parameter
and in this way to implement “nonlinear” seismic mon-
itoring on characteristic scales up to hundreds of kilo-
meters and at processing times of about several hours.

(17)

6. Harmonic Pump Field Along Probe
Wave Direction

Another possibility for obtaining information about
spatial distribution of the nonlinear parameter consists
in using an artificial harmonic source of the pump field,
with a signal emitted at the frequency €2 that is much
lower than the probe wave frequency wqg. This field is
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no longer spatially homogeneous, so while using it calcu-
lation of integral expressions of the type (10) for varia-
tions of the probe wave phase would involve kernels that
are different from those of (10), i.e., give an additional
information on spatial distribution of the nonlinear pa-
rameter.

The pump wave field can be calculated from given
values of sound velocity V(x,y, z) and density p(z,y, 2)
with the aid of an expression similar to (13). If the
problem of creating a stationary ray path arises with the
purpose of long-term monitoring of nonlinear parame-
ters variations, then the spatial distribution of linear
characteristics (V' and p) should be determined from
preliminary measurements by conventional (remote or
contact) methods. Below, with the view of preliminary
estimation, we roughly assume, as we did earlier in dis-
cussing (13), that ray tubes are spherically divergent,
ie.,

en(l) = exp(=,0) (20 /1)

where ¢y is the strain amplitude in the pump source
field reduced to 1 m.

The mutual position of pump and probe wave sources
can be chosen in many ways. A simple case is repre-
sented by codirectional propagation of both waves when
positions of both sources coincide. Then, by (10) we ob-
tain the following two integrals for opposite endpoints
of the trajectory where coincident sources of a pump
field and probe waves are alternately located

(18)

L
Agp:w/g—owexp(—énl) dl (19)
Vv

1

1
_ g0 I'()
Ago_w/L_l T

L

p[—dn (L = 1)] dl (20)

where the ray coordinate [ in both cases is measured
from the same path endpoint. As distinct from (12),
this phase modulation has the pump wave period 27 /€.
It is noteworthy that generally speaking, the integrals
(19) and (20) contain different information on distri-
bution of the nonlinear parameter. In fact, any func-
tion f(!) can be represented as a sum of even and odd
components (with respect to the midpoint of the path
! = L/2). Contributions of the even component into
(19) and (20) evidently will be the same, and those of
the odd component will be different.

Thus source configurations considered above give
three integrals Ay for phase variations determined by
(19), (20), and (12) (as has been discussed earlier, the
latter is calculated from observations of tidal phase vari-
ations in a probe wave). This set of integrals allows one
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not only to estimate average values of the parameter
T'(l), but also to solve the problem of reconstructing
its distribution along the ray path (though in a fairly
rough approximation). For instance, this can be done
by representing an unknown distribution T'({) as a sum
of certain functions F; (“reasonably” chosen in accor-
dance with the expected type of a distribution to be
reconstructed):

T({l)=> aiF() (21)

2

Substitution of (21) into (12), (19), and (20) leads to
the system of linear equations:

Mkjozj = Ag@k (22)

where

L

Mlj = w/(gn/V)F](l) dl

exp(—dnl)
Ms; :w/EOTFj(Z) dl
1

1

Ms; = w/gowlvj(z) dl

Solution of (22) in unknown coefficients of expansion
a; can be, for example, obtained by means of regular-
ization methods that are generally used in tomography
problems [Levushkin and Penkin, 1993]. In principle,
resolution of (19) can be enhanced through the use of
more than three components, which, on the other hand,
leads to underdifiniteness of the problem solved. Valid-
ity of the choice of the solution in such a form should
be checked on by preliminary numerical modeling with
regard to the expected form of an inhomogeneity to be
reconstructed [Pikalov and Preobrazhenskiy, 1983].
Now, we estimate now the possible level of a useful
signal that can be detected in terms of the discussed
scheme. With the assumption of a homogeneous distri-
bution of the nonlinear parameter I' = I'g, the phase
variation |Aep| can be estimated from (19) as follows:

|Ap| = welo[Ei[dn, L(M)] — Ei[é, - IM]]/V (23)
where Ei is the integral exponent, and the expression in
parentheses has the asymptotics log(L*), where L* = L
at oL &« 1 or L* = Lg/y at 6, L > 1 (Lz = 1/6,
is the attenuation length of the pump wave and v &
1.78 Euler constant). Proceeding in the same manner
as in deriving (14), we obtain that (23) corresponds to
amplitude modulation of the probe wave:
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|AA| = AgApexp(—y L)/ L ~
(24)
~ wAeo T exp(—do L) log[ L™ (M)]/(LV)

where &g is the attenuation constant of the probe wave.
As distinct from (14), the value AA remains depen-
dent upon the path length even if attenuation is ne-
glected. In this case the expression for the time required

for coherent stacking assumes the form

{02y exp(260 L) L?
(2m)* f2(T/(2V)) €5 [log(L7)]?

The values of material parameters and noise level used
for estimating the value 7" are the same as in the anal-
ysis of (12). We also assume that acoustic powers of
pump and probe wave sources are 1000 W and 100 W,
respectively. As a result, optimum frequencies (17) cho-
sen for the probe wave give F & 1 s for the distance
L =1km and T'= 1-2 hours for L = 10 km (also, the
pump frequency is supposed to be low enough to ignore
attenuation, L* & L).

T SN A% (25)

7. Harmonic Pump Field in
Perpendicular and Counter
Directions

To enhance the spatial resolution, additional integrals
of type (10) are required which would provide inde-
pendent information on an inhomogeneity to be recon-
structed. For this purpose, several different pump fre-
quencies could be employed since they imply differences
in the gradient of the factor in (18), but this means
is constrained by the requirement that the frequency
of pumping should be much lower than that of a probe
wave. An alternate approach is related with an alternate
relative position of probe and pump wave sources. In
a general case, mutual orientation of interacting waves
can be arbitrary. If we suppose that the spatial distribu-
tion of the linear characteristics V and p is known from
preliminary measurements then we are able to calculate
the path shape of the probe wave and spatial distribu-
tion of the pump field €, (r, ) (or ,({,t) in terms of the
ray coordinate defined by the probe wave). The latter
should be substituted into (10) for a chosen configura-
tion of sources. However, assuming an arbitrary source
position, such calculation requires fairly detailed pre-
liminary information about linear parameters, which is
difficult to realize in practice. In this respect more ad-
vantageous appears to be a scheme in which pump wave
propagation is normal to the probe wave direction, and
the pump field amplitude is set to be the same all along
the signal path. Such a scheme is realized when the
pump source is on the side of the path under investiga-
tion, at a distance much greater than the path length.
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In this approximation, expression (10) that defines the
probe wave phase shift due to interaction with pumping
takes the form

Ap = w/ %esn(Ll) exp(iK1) dl (26)

where K = /V is the mean wave vector of the
pump wave (its variation along the path is ignored) and
en(L1) = €o/L1 . Thus by varying the pump frequency,
we obtain a set of the integrals (which are in essence
components of the Fourier series of the nonlinearity pa-
rameter T'({)). The reconstruction is attainable either
by obtaining and solution of the system of type (22) or
by applying the inverse Fourier transformation.

To estimate the level of an useful signal, we assume
that the pump wave is generated by a source with power
of about 1000 W and operating frequency of 50 Hz which
is located at the distance L; = 3 km from a probe wave
path, the wavelength being I = 1 km. The following
expression, instead of (12), is obtained for the coherent
stacking time:

(02) exp(269 L)4L% L*
T & SN
Aj(2m)? [2(TC)/(2V))e5A°

where A = 2w/ K. Hence we have T & 100 hour.

Also, another limiting case is sufficiently simple for
description and it i1s represented by pump and probe
wave sources located at opposite endpoints of the path.
Both waves in such configuration propagate along the
same trajectory (though in counter directions) so that
in solving the problem on reconstruction of the non-
linear parameter distribution along the ray path we do
not need so detailed preliminary information that is re-
quired in a general case. In much the same way as (26),
the probe wave phase shift is now written in the form

(27)

I'{0)

Ap = w/ (670) exp(—dpl) == exp(2Kl)dl  (28)

2V

Thus the cases of orthogonal and counter propagation
of waves at different pump frequencies (of wave vectors)
give a set of integrals of the type (28). Use of this set
(in addition to (12), (19), and (20)) for reconstruction
of the nonlinear parameter distribution enhances reso-
lution whose limiting scale is defined by the pump wave-
length. This can be implemented, for instance, in terms
of the above-described approach, with a greater number
of components being chosen in the decomposition of a
reconstructed image (21) to increase dimensionality of
the system (22). However, decrease in pump wavelength
evidently leads to decrease in the absolute magnitude of
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the phase variation ((26) and (18)), and so desired ac-
curacy of measurements requires higher stacking time.
Therefore in practice, 1t would be hardly reasonable to
choose the value K L in excess of a few tens. The time re-
quired for signal stacking will amount from a few hours
to a few days if pump sources in use have acoustic power
of about 1 kW frequencies of about one half hundred
hertz, and sounding range from one to several kilome-
ters.

We note that the problem of identification of trajec-
tories of interacting waves is of importance in the above
schemes based on the use of audio signals. For instance,
surface (Rayleigh) waves and the like, beside the deep
path of interest, can contribute to a general signal re-
ceived. So, in practice, identification of trajectories can
require the use of pulse signals with synchronized enve-
lope and carrier.

8. Conclusions

Thus the above discussion has demonstrated the pos-
sibility to observe nonlinear phase variations of a probe
wave subject to the action of another (pumping) wave
which can be represented either by a wave emitted by
an artificial source or, for instance, by the field of tidal
deformations. The effect can be applied to measuring
the value and spatial distribution of the nonlinear pa-
rameter along a sounding ray path. Since such measure-
ments, particularly at great distances, require consider-
able time for their coherent processing, they appear to
be most advantageous for implementation of long-term
monitoring of nonlinear rock properties at stationary
ray paths with the view of detecting changes of internal
stresses connected with preparing processes of earth-
quakes. A higher level of signal, comparatively smaller
processing times and higher spatial resolution are at-
tainable at smaller distances, and in this case methods
of nonlinear parameter tomography can be applied to
seismic exploration (mineral prospecting, monitoring of
oil and gas fields, etc.).
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